Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ischemia is characterized by anoxia and a large decrease of tissue pH. After a critical period of ischemia, reperfusion precipitates irreversible injury. Previous work showed that reperfusion injury to cultured neonatal myocytes was precipitated by a rapid return to physiological pH, a "pH paradox" (Bond, J., B. Herman, and J. Lemasters. Biochem. Biophys. Res. Commun. 179: 798-803, 1991). The aim of this study was to measure intracellular pH (pHi) and cytosolic free Ca2+ during the pH paradox of reperfusion injury to cultured neonatal rat cardiac myocytes. pHi and free Ca2+ were measured by ratio imaging of 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein and fura 2 fluorescence. To simulate ATP depletion and acidosis of ischemia, myocytes were incubated with 20 mM 2-deoxyglucose plus 2.5 mM NaCN at pH 6.2. During simulated ischemia, pHi dropped to < 6.5 and subsequently remained constant. During this time, some blebbing but little hypercontraction occurred. After 3 or 4 h of simulated ischemia, inhibitors were removed and cells were incubated at pH 7.4 to simulate reperfusion. pHi began to increase, blebbing accelerated, and myocytes hypercontracted. As pHi increased, viability was lost. The same occurred if pH was increased but metabolic inhibitors were not removed. Monensin, a Na(+)-H+ ionophore, accelerated the increase of pH after reperfusion and hastened cell killing. Hypercontraction, blebbing, and loss of viability did not occur when inhibitors were removed at pH 6.2 or in the presence of dimethylamiloride, an inhibitor of Na(+)-H+ exchange. Protection was associated with maintenance of an acidotic pHi. Free Ca2+ progressively increased during simulated ischemia. After simulated reperfusion, free Ca2+ increased further.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.1993.265.1.C129 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!