Prophylactic effects of recombinant human superoxide dismutase in neonatal lung injury.

J Appl Physiol (1985)

Department of Pediatrics (Neonatology), Winthrop University Hospital, State University of New York, School of Medicine, Stony Brook, Mineola 11501.

Published: May 1993

To determine if recombinant human Cu-Zn superoxide dismutase (rhSOD) would prevent acute lung injury caused by hyperoxia and barotrauma, 26 newborn piglets were studied. Ten piglets were hyperventilated (arterial PCO2 15-20 Torr) with 100% O2 for 48 h. A second group received identical treatment for 4 h (n = 2) or 48 h (n = 8) but was given 5 mg/kg of rhSOD intratracheally at time 0. Six piglets were normally ventilated (arterial PCO2 40-45 Torr) for 48 h with 21% O2. Pulmonary function and tracheal aspirates were examined at time 0 and at 24 and 48 h, and bronchoalveolar lavage was performed at 48 h. In piglets treated with hyperoxia and hyperventilation, lung compliance decreased 42%, and tracheal aspirates showed an increase in neutrophil chemotactic activity (32%), total cell counts (135%), elastase activity (93%), and albumin concentration (339%) over 48 h (P < 0.05). All variables were significantly lower in rhSOD-treated piglets and comparable to normoxic control values. Surfactant remained active in all groups. Immunohistochemistry demonstrated that at 48 h significant rhSOD was distributed homogeneously in terminal airways. Adding rhSOD to tracheal aspirates of hyperoxic hyperventilated piglets did not alter neutrophil chemotaxis, suggesting that rhSOD protected the lung by reducing the production of chemotactic mediators. Results indicate that acute lung injury caused by 48 h of hyperoxia and hyperventilation is significantly ameliorated by prophylactic intratracheal administration of rhSOD.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1993.74.5.2234DOI Listing

Publication Analysis

Top Keywords

lung injury
12
tracheal aspirates
12
recombinant human
8
superoxide dismutase
8
acute lung
8
injury caused
8
caused hyperoxia
8
arterial pco2
8
hyperoxia hyperventilation
8
rhsod
6

Similar Publications

Corrigendum to "Isopropyl 3-(3, 4-dihydroxyphenyl)-2-hydroxypropanoate protects lipopolysaccharide-induced acute lung injury in mice by attenuating pyroptosis" [Eur. J. Pharmacol. 5 (2023) 175545].

Eur J Pharmacol

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, PR China. Electronic address:

View Article and Find Full Text PDF

Background: Adrenomedullin (AM) is a potent angiogenic, antioxidant and anti-inflammatory peptide protecting the developing lung from injury due to bronchopulmonary dysplasia (BPD) of the preterm infant. At this stage, no data on the potential effects of chorioamnionitis (CA) occurrence and glucocorticoids (GC) administration on AM in developing lungs are still lacking.

Objective: to investigate, in a sheep-based model, the positive/side-effects of combined exposure to CA and GC on AM concentrations measured in bronchoalveolar lavage fluid (BALF).

View Article and Find Full Text PDF

Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!