Structural and molecular compartmentation in the cerebellum.

Can J Neurol Sci

Department of Anatomy, University of Calgary, Alberta, Canada.

Published: May 1993

AI Article Synopsis

  • Most descriptions of the cerebellum consider it to be a uniform structure, but recent evidence suggests it actually consists of distinct modules with unique inputs and outputs.
  • Researchers have used a monoclonal antibody library to identify specific antigens, known as zebrins, that highlight the cerebellum's hidden heterogeneity.
  • The article discusses these findings, connects them to the cerebellum's connectivity patterns, and explores potential mechanisms for its modular organization.

Article Abstract

Most descriptions treat the cerebellum as a uniform structure, and the possibility of important regional heterogeneities in either chemistry or physiology is rarely considered. However, it is now clear that such an assumption is inappropriate. Instead, there is substantial evidence that the cerebellum is composed of hundreds of distinct modules, each with a precise pattern of inputs and outputs, and expressing a range of molecular signatures. By screening a monoclonal antibody library against cerebellar polypeptides we have identified antigens--zebrins--that reveal some of the cerebellum's covert heterogeneity. This article reviews some of these findings, relates them to the patterns of afferent connectivity, and considers some possible mechanisms through which the modular organization may arise.

Download full-text PDF

Source

Publication Analysis

Top Keywords

structural molecular
4
molecular compartmentation
4
compartmentation cerebellum
4
cerebellum descriptions
4
descriptions treat
4
treat cerebellum
4
cerebellum uniform
4
uniform structure
4
structure possibility
4
possibility regional
4

Similar Publications

Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.

View Article and Find Full Text PDF

Plasma phosphorylated tau biomarkers open unprecedented opportunities for identifying carriers of Alzheimer's disease pathophysiology in early disease stages using minimally invasive techniques. Plasma p-tau biomarkers are believed to reflect tau phosphorylation and secretion. However, it remains unclear to what extent the magnitude of plasma p-tau abnormalities reflects neuronal network disturbance in the form of cognitive impairment.

View Article and Find Full Text PDF

Background And Objectives: Cognitive deficits represent a major long-term complication of anti-leucine-rich, glioma-inactivated 1 encephalitis (LGI1-E). Although severely affecting patient outcomes, the structural brain changes underlying these deficits remain poorly understood. In this study, we hypothesized a link between white matter (WM) networks and cognitive outcomes in LGI1-E.

View Article and Find Full Text PDF

The TOXIN knowledge graph: supporting animal-free risk assessment of cosmetics.

Database (Oxford)

January 2025

Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.

The European Union's ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data.

View Article and Find Full Text PDF

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a powerful technique to interrogate protein structure and dynamics. With the ability to study almost any protein without a size limit, including intrinsically disordered ones, HDX-MS has shown fast growing importance as a complement to structural elucidation techniques. Current experiments compare two or more related conditions (sequences, interaction partners, excipients, conformational states, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!