Arrestins have been implicated in the regulation of many G protein-coupled receptor signaling cascades. Mutations in two Drosophila photoreceptor-specific arrestin genes, arrestin 1 and arrestin 2, were generated. Analysis of the light response in these mutants shows that the Arr1 and Arr2 proteins are mediators of rhodopsin inactivation and are essential for the termination of the phototransduction cascade in vivo. The saturation of arrestin function by an excess of activated rhodopsin is responsible for a continuously activated state of the photoreceptors known as the prolonged depolarized afterpotential. In the absence of arrestins, photoreceptors undergo light-dependent retinal degeneration as a result of the continued activity of the phototransduction cascade. These results demonstrate the fundamental requirement for members of the arrestin protein family in the regulation of G protein-coupled receptors and signaling cascades in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.8316831 | DOI Listing |
J Nat Prod
January 2025
Charlotte's Web, 700 Tech Court, Louisville, Colorado 80027, United States.
Cannabicyclol ((±)-CBL), a minor phytocannabinoid, is largely unexplored, with its biological activity previously undocumented. We studied its conversion from cannabichromene (CBC) using various acidic catalysts. Montmorillonite (K30) in chloroform at room temperature had the highest yield (60%) with minimal byproducts.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
G protein-coupled receptor (GPCR) signalling pathways underlie numerous physiological processes, are implicated in many diseases and are major targets for therapeutics. There are more than 800 GPCRs, which together transduce a vast array of extracellular stimuli into a variety of intracellular signals via heterotrimeric G protein activation and multiple downstream effectors. A key challenge in cell biology research and the pharmaceutical industry is developing tools that enable the quantitative investigation of GPCR signalling pathways to gain mechanistic insights into the varied cellular functions and pharmacology of GPCRs.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed at hypothalamic neurons that has an important role in appetite suppression and food intake. Mutations in MC4R are the most common cause of monogenic obesity and can affect multiple signaling pathways including Gs-cAMP, Gq, ERK1/2, β-arrestin recruitment, internalization and cell surface expression. The melanocortin-2 receptor accessory protein 2 (MRAP2), is a single-pass transmembrane protein that interacts with and regulates signaling by MC4R.
View Article and Find Full Text PDFExp Eye Res
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325027, P. R. China. Electronic address:
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease linked to aging. This study investigates potential connections between IPF and age-related eye problems using a bleomycin-induced IPF mouse model. Intratracheal administration of bleomycin induces rapid lung injury in mice, followed by IPF with characteristics of cellular senescence.
View Article and Find Full Text PDFPharmacol Res
January 2025
Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; RECITAL International Partnership Lab, Université de Caen-Normandie, Caen, France & Université de Sherbrooke, Sherbrooke, QC, Canada. Electronic address:
β-arrestins play pivotal roles in seven transmembrane receptor (7TMR) signalling and trafficking. To study their functional role in regulating specific receptor systems, current research relies mainly on genetic tools, as few pharmacological options are available. To address this issue, we designed and synthesised a novel lipidated phosphomimetic peptide inhibitor targeting β-arrestins, called ARIP, which was developed based on the C-terminal tail (A343-S371) of the vasopressin V2 receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!