The role of barium ions in excitation-contraction coupling was studied in single isolated frog semitendinosus fibres. Simultaneous recordings of membrane currents and contraction under voltage-clamp conditions in a sucrose-vaseline gap device show that barium ions have a reversible inhibiting effect on contraction. This inhibiting action was correlated to the entry of barium ions via the DHP-sensitive tubular calcium channel. Cytological observations and X-ray microanalysis performed on the fibres used in the electrophysiological experiments indicate that barium ions do not accumulate in the junctional sarcoplasmic reticulum; they can freely diffuse in the intermyofibrillar space and they accumulate in mitochondria. Calcium release experiments performed on isolated sarcoplasmic reticulum vesicles show that barium ions are not able to induce calcium release from calcium-loaded vesicles, they behave as calcium release inhibitors. These results are discussed in relation with the possible role of the slow Ca current in excitation-contraction coupling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00115450 | DOI Listing |
Discov Nano
January 2025
Physics Department/Faculty of Science, Sana'a University, Sana'a, Yemen.
Acta Crystallogr C Struct Chem
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Menoufia University, Shebin El-Koom, Menoufia, 32511, Egypt.
Skelet Muscle
December 2024
Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Insulin resistance and type 2 diabetes impair cellular regeneration in multiple tissues including skeletal muscle. The molecular basis for this impairment is largely unknown. Glucose uptake via glucose transporter GLUT4 is impaired in insulin resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!