Mouse and dog epithelial cell lines, expressing high levels of the Ca(2+)-dependent cell-cell adhesion molecule E-cadherin in vitro, generated invasive and metastatic tumors in athymic mice. From these tumors, neoplastic cell lines were isolated. All ex vivo isolates retained high expression levels of E-cadherin at their surface. Nevertheless, some showed a fusiform morphotype, were defective in Ca(2+)-dependent cell aggregation, and were invasive in vitro, indicating that E-cadherin was not functional. Cell-associated proteoglycans were found to be enlarged in these variants as compared to their counterparts with functional E-cadherin. Treatment of the cells with the drug 4-methylumbelliferyl beta-D-xyloside specifically reduced the amount and size of cell-associated proteoglycans. This same drug induced an epithelial morphotype, increased Ca(2+)- and E-cadherin-dependent cell aggregation, and abrogated invasiveness without influencing E-cadherin expression levels. Our results indicate that enlarged proteoglycans can prevent the homophilic binding of E-cadherin, probably by steric hindrance. This is one more mechanism by which carcinomas may counteract invasion-suppressor genes and acquire malignancy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell-associated proteoglycans
12
cell lines
8
expression levels
8
cell aggregation
8
e-cadherin
7
enlarged cell-associated
4
proteoglycans
4
proteoglycans abolish
4
abolish e-cadherin
4
e-cadherin functionality
4

Similar Publications

Peptide-based therapeutics are gaining attention for their potential to target various viral and host cell factors. One notable example is Pep19-2.5 (Aspidasept), a synthetic anti-lipopolysaccharide peptide that binds to heparan sulfate proteoglycans (HSPGs) and has demonstrated inhibitory effects against certain bacteria and enveloped viruses.

View Article and Find Full Text PDF

Disabled-2: a protein up-regulated by high molecular weight hyaluronan has both tumor promoting and tumor suppressor roles in ovarian cancer.

Cell Mol Life Sci

October 2023

Reproductive Cancer Group, Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, Adelaide Health and Medical Sciences Building, The University of Adelaide, Level 5, North Terrace, Adelaide, SA, 5000, Australia.

Although the pro-tumorigenic functions of hyaluronan (HA) are well documented there is limited information on the effects and targets of different molecular weight HA. Here, we investigated the effects of 27 kDa, 183 kDa and 1000 kDa HA on ES-2 ovarian cancer cells overexpressing the stem cell associated protein, Notch3. 1000 kDA HA promoted spheroid formation in ES-2 cells mixed with ES-2 overexpressing Notch3 (1:3).

View Article and Find Full Text PDF

The Tissue Factor Pathway in Cancer: Overview and Role of Heparan Sulfate Proteoglycans.

Cancers (Basel)

February 2023

Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany.

Historically, the only focus on tissue factor (TF) in clinical pathophysiology has been on its function as the initiation of the extrinsic coagulation cascade. This obsolete vessel-wall TF dogma is now being challenged by the findings that TF circulates throughout the body as a soluble form, a cell-associated protein, and a binding microparticle. Furthermore, it has been observed that TF is expressed by various cell types, including T-lymphocytes and platelets, and that certain pathological situations, such as chronic and acute inflammatory states, and cancer, may increase its expression and activity.

View Article and Find Full Text PDF

Regarding the problems with the current available drugs many research studies deal with the class of the dispirotripiperazine (DSTP)-based compounds. These are small molecules consisting of polycyclic saturated ring systems with positively charged nitrogen atoms. These compounds can interact with negatively charged HSPGs and thus block viral attachment.

View Article and Find Full Text PDF

Background: The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!