The promoters of a majority of cereal alpha-amylase genes contain three highly conserved sequences (gibberellin response element, box I, and pyrimidine box). Recent studies have demonstrated the functional importance of four regions that either coincide with or are immediately proximal to these three conserved elements as well as an upstream Opaque-2 binding sequence. In this study, we describe the characterization of nuclear protein factors from barley aleurone layers whose binding activity toward gibberellin response complex sequences from the barley low-pl alpha-amylase gene (Amy32b) promoter is stimulated by gibberellin A3 (GA3) treatment. Barley proteins isolated from crude nuclear extracts prepared from aleurone layers incubated with or without GA3 were fractionated by anion exchange fast protein liquid chromatography and studied using band shift assays, sequence-specific competitions, and DNase I footprinting. A GA3-dependent binding activity eluting at 210 mM KCl was shown to bind specifically to the gibberellin response element and the closely associated box I. DNase I footprinting with the proteins in this fraction indicated interactions with sequences in the gibberellin response element and box I. A second DNA binding activity eluting at 310 mM KCl was present constitutively in extracts prepared from tissues incubated both in the absence and in the presence of hormone. Proteins in this fraction were able to bind to many DNA sequences and, in general, were largely nonspecific. DNase I footprinting with the proteins in this fraction indicated a large area of protection with a single unoccupied region located at the 3' end of box I. The possible function of such an activity in hormone regulation of the alpha-amylase genes is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC160396 | PMC |
http://dx.doi.org/10.1105/tpc.5.11.1681 | DOI Listing |
Nat Commun
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Virology and Biotechnology, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
Fluoroquinolone antibiotic enrofloxacin (ENR) is frequently detected in agricultural environments. The hormesis and detrimental effects of ENR on crops have been extensively observed. However, the molecular mechanisms underlying these crops' responses to ENR remain limited.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye. Electronic address:
Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!