Our studies on the lymphocyte cytoskeleton have revealed a significant heterogeneity in the subcellular distribution of lymphocyte spectrin in vivo. Two model systems have been characterized in which this protein exhibits dynamic properties in response to activation signals. In this study, we have investigated the role of calcium in the activation-induced reorganization of spectrin in one of these systems, the DO-11.10 T cell hybridoma. DO-11.10 cells, as well as several other in vitro T cell models, can homogeneously and constitutively express a distinct cytoplasmic aggregate of spectrin that is rapidly fragmented upon activation. The reversible dissipation of the aggregate of spectrin is accompanied by an increase in the levels of spectrin diffusely distributed throughout the cytoplasm and at the plasma membrane. Pretreatment of cells with calcium-free medium, or with medium containing ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA) or verapamil, significantly blocked the reorganization of spectrin induced by Concanavalin A or the calcium ionophore A23187, and also prevented the release of IL-2 from these cells. Further, immunofluorescent and ultrastructural analyses revealed abnormalities in the organization of spectrin induced by these treatments. These findings are discussed in light of our other studies, indicating a role for spectrin in early events associated with activation of T lymphocytes in vivo and in vitro.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spectrin
9
reorganization spectrin
8
aggregate spectrin
8
spectrin induced
8
dynamic aspects
4
aspects cytoskeletal
4
cytoskeletal protein
4
protein distribution
4
distribution lymphocytes
4
lymphocytes involvement
4

Similar Publications

Mechanical forces are critical for virtually all fundamental biological processes, yet quantification of mechanical forces at the molecular scale remains challenging. Here, we present a new strategy using calibrated coiled-coils as genetically encoded, compact, tunable, and modular mechano-sensors to substantially simplify force measurement , via diverse readouts (luminescence, fluorescence and analytical biochemistry) and instrumentation readily available in biology labs. We demonstrate the broad applicability and ease-of-use of these coiled-coil mechano-sensors by measuring forces during cytokinesis (formin Cdc12) and endocytosis (epsin Ent1) in yeast, force distributions in nematode axons (β-spectrin UNC-70), and forces transmitted to the nucleus (mini-nesprin-2G) and within focal adhesions (vinculin) in mammalian cells.

View Article and Find Full Text PDF

Cytoplasmic dynein is essential in motoneurons for retrograde cargo transport that sustains neuronal connectivity. Little, however, is known about dynein's function on the postsynaptic side of the circuit. Here we report distinct postsynaptic roles for dynein at neuromuscular junctions (NMJs).

View Article and Find Full Text PDF

Oxidative Stress and Cytoskeletal Reorganization in Hypertensive Erythrocytes.

Antioxidants (Basel)

December 2024

Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07700, Mexico.

Oxidative stress is widely recognized as a key mechanism in the development of hypertension. Under pathological conditions, such as in hypertension, oxidative stress leads to irreversible posttranslational modifications of proteins, which result in loss of protein function and cellular damage. We have previously documented physiological and morphological changes across various blood and bone marrow cell lineages, all of which exhibit elevated oxidative stress.

View Article and Find Full Text PDF

Dynamic mechanisms for membrane skeleton transitions.

J Cell Sci

January 2025

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.

The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecular players forming this complex composite material constantly rearrange under mechanical stress. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and linked by short actin filaments.

View Article and Find Full Text PDF

Dehydrocorydaline maintains the vascular smooth muscle cell contractile phenotype by upregulating Spta1.

Acta Pharmacol Sin

January 2025

The Fifth Affiliated Hospital, Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.

Vascular smooth muscle cell (VSMC) phenotypic switching plays a crucial role in the initiation and progression of atherosclerosis. Dehydrocorydaline (DHC), a major active component of the traditional Chinese herbal medicine Rhizoma Corydalis, exhibits diverse pharmacological effects. However, its impact on VSMCs remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!