The convolution/superposition method of dose calculation has the potential to become the preferred technique for radiotherapy treatment planning. When this approach is used for therapeutic x-ray beams, the dose spread kernels are usually aligned parallel to the central axis of the incident beam. While this reduces the computational burden, it is more rigorous to tilt the kernel axis to align it with the diverging beam rays that define the incident direction of primary photons. We have assessed the validity of the parallel kernel approximation by computing dose distributions using parallel and tilted kernels for monoenergetic photons of 2, 6, and 10 MeV; source-to-surface distances (SSDs) of 50, 80, and 100 cm; and for field sizes of 5 x 5, 15 x 15, and 30 x 30 cm2. Over most of the irradiated volume, the parallel kernel approximation yields results that differ from tilted kernel calculations by 3% or less for SSDs greater than 80 cm. Under extreme conditions of a short SSD, a large field size and high incident photon energy, the parallel kernel approximation results in discrepancies that may be clinically unacceptable. For 10-MeV photons, we have observed that the parallel kernel approximation can overestimate the dose by up to 4.4% of the maximum on the central axis for a field size of 30 x 30 cm2 applied with a SSD of 50 cm. Very localized dose underestimations of up to 27% of the maximum dose occurred in the penumbral region of a 30 x 30-cm2 field of 10-MeV photons applied with a SSD of 50 cm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.596955 | DOI Listing |
Med Biol Eng Comput
January 2025
Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, 230031, Anhui, China.
The identification and categorization of circulating tumor cells (CTCs) in peripheral blood are imperative for advancing cancer diagnostics and prognostics. The intricacy of various CTCs subtypes, coupled with the difficulty in developing exhaustive datasets, has impeded progress in this specialized domain. To date, no methods have been dedicated exclusively to overcoming the classification challenges of CTCs.
View Article and Find Full Text PDFNat Commun
January 2025
NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.
View Article and Find Full Text PDFPLoS One
January 2025
Xinjiang Institute of Technology, Aksu, China.
Facial expression recognition faces great challenges due to factors such as face similarity, image quality, and age variation. Although various existing end-to-end Convolutional Neural Network (CNN) architectures have achieved good classification results in facial expression recognition tasks, these network architectures share a common drawback that the convolutional kernel can only compute the correlation between elements of a localized region when extracting expression features from an image. This leads to difficulties for the network to explore the relationship between all the elements that make up a complete expression.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
The increasing demand for hazelnut kernels is favoring an upsurge in hazelnut cultivation worldwide, but ongoing climate change threatens this crop, affecting yield decreases and subject to uncontrolled pathogen and parasite attacks. Technical advances in precision agriculture are expected to support farmers to more efficiently control the physio-pathological status of crops. Here, we report a straightforward approach to monitoring hazelnut trees in an open field, using aerial multispectral pictures taken by drones.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic Information and Physics, Central South University of Forestry Science and Technology, Changsha, 410004, China.
Graph neural networks have excellent performance and powerful representation capabilities, and have been widely used to handle Few-shot image classification problems. The feature extraction module of graph neural networks has always been designed as a fixed convolutional neural network (CNN), but due to the intrinsic properties of convolution operations, its receiving domain is limited. This method has limitations in capturing global feature information and easily ignores key feature information of the image.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!