Determination of etoposide in blood by liquid chromatography with electrochemical detection.

J Chromatogr

Department of Pharmaceutical Sciences, Sterling Winthrop, Inc., Malvern, PA 19355.

Published: November 1993

A liquid chromatographic (LC) method for determination of etoposide in dog blood is described. The technique includes solvent extraction of etoposide using a dichloroethane-hexane mixture and reconstitution of the drug in an aqueous reconstitution solution. The samples are analyzed by reversed-phase LC with electrochemical detection. Validation of the method demonstrated good sensitivity, precision and reproducibility. The method is useful for the study of etoposide pharmacokinetics in the dog.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0378-4347(93)80084-hDOI Listing

Publication Analysis

Top Keywords

determination etoposide
8
electrochemical detection
8
etoposide blood
4
blood liquid
4
liquid chromatography
4
chromatography electrochemical
4
detection liquid
4
liquid chromatographic
4
chromatographic method
4
method determination
4

Similar Publications

Effective decontamination of hospital surfaces is crucial to protect workers from antineoplastic drugs (ADs) since dermal absorption is the main exposure route to these hazardous medicinal products. Sampling after daily cleaning in oncologic settings from a tertiary hospital was initially performed and exhibited low contamination levels; however, cyclophosphamide was still found (up to 957 pg/cm) above the guidance value (100 pg/cm) in four locations, evidencing the need to properly assess and update the cleaning protocols. Then, cleaning efficiencies of six solutions and different protocols were evaluated (including, for the first time, four commercial cleaning solutions/disinfectants not designed specifically for AD removal) after deliberate contamination of three model surfaces with 13 pharmaceuticals: bicalutamide, capecitabine, cyclophosphamide, cyproterone, doxorubicin, etoposide, flutamide, ifosfamide, imatinib, megestrol, mycophenolate mofetil, paclitaxel, and prednisone.

View Article and Find Full Text PDF

Background: Combining natural compounds with chemotherapeutic agents has emerged as a promising approach for cancer treatment. Curcumin (Cur), a natural polyphenol, is known for its anti-cancer properties, including the ability to induce apoptosis and arrest cell cycle progression.

Objectives: This study aimed to evaluate the effects of Cur and etoposide (ETO), both individually and in combination, on the induction of apoptosis in breast cancer (BC) cell lines.

View Article and Find Full Text PDF

A series of fluoroquinolone analogs (II, III) derived from Ciprofloxacin hydrazide were designed, and synthesized. The NCI-60 Human Tumor Cell Line Screening assay indicated that compounds II, III, and III are the most potent among the series and were further selected for five-dose evaluation, where they exhibited potent cytotoxicity with mean GI values of 3.30, 2.

View Article and Find Full Text PDF

Comprehensive Cellular Senescence Evaluation to Aid Targeted Therapies.

Research (Wash D C)

January 2025

State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China.

Drug resistance to a single agent is common in cancer-targeted therapies, and rational drug combinations are a promising approach to overcome this challenge. Many Food and Drug Administration-approved drugs can induce cellular senescence, which possesses unique vulnerabilities and molecular signatures. However, there is limited analysis on the effect of the combination of cellular-senescence-inducing drugs and targeted therapy drugs.

View Article and Find Full Text PDF

Cutaneous T-cell lymphomas (CTCLs) are a rare and heterogeneous subset of skin-localized, non-Hodgkin lymphomas. Our aim was to evaluate the in vitro antitumor activity of the multi-kinase inhibitor linifanib, either alone or in combination with metronomic vinorelbine (mVNR) or etoposide (mETO), on CTCL cells. In vitro proliferation assay and Luminex analysis showed that long-term, daily exposure of linifanib significantly inhibited the proliferation of the human CTCL cell line HH, in a concentration-dependent manner (IC = 48.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!