Inspiratory muscle fatigue, a common event in patients in the intensive care unit, is under multifactorial control. To test the hypothesis that systemic oxygenation is a factor in this event, we subjected five healthy males (age 42 +/- 3 yr) to continuous inspiratory pressure (75% of maximal inspiratory pressure, -95 +/- 5 cmH2O) with the use of a controlled breathing pattern while they breathed normoxic (21% O2), hyperoxic (30% O2), and hypoxic (13% O2) mixtures. Inspiratory muscle endurance (IME; time that pressure could be maintained) and other cardiorespiratory parameters were monitored. Room air IME (3.3 +/- 0.4 min) was shortened (P < 0.05) during 13% O2 breathing (1.6 +/- 0.4 min) but was unaffected during 30% O2 breathing (4.0 +/- 0.6 min). Inspiratory loading lowered the respiratory exchange ratio (RER) during the 21 and 30% O2 trials (1.02 +/- 0.01 to 0.80 +/- 0.03% and 1.05 +/- 0.05 to 0.69 +/- 0.01%, respectively) but not during the 13% O2 trials (1.03 +/- 0.03 to 1.06 +/- 0.07%). At the point of fatigue during the 13% O2 trials, RER was lower compared with the same time point during the 21 and 30% O2 trials. A significant relationship was observed between IME and RER (r = -0.73, P = 0.002) but not between IME and any of the other measured variables. We conclude that 1) hypoxemia impairs the ability of the inspiratory muscles to sustain a mechanical challenge and 2) substrate utilization of the respiratory muscles shifts toward a greater reliance on lipid metabolism when O2 is readily available; this shift was not observed when the O2 supply was reduced.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1993.75.5.2188DOI Listing

Publication Analysis

Top Keywords

inspiratory muscle
12
+/- min
12
+/-
11
muscle fatigue
8
inspiratory pressure
8
breathing +/-
8
30% trials
8
13% trials
8
inspiratory
7
metabolic basis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!