Background: The development of a metabolically stable radioiodination reagent for coupling to monoclonal antibodies is a desirable goal. The radioiodination of monoclonal antibodies D612 and 17-1A reactive with human colon cancer with 3-iodophenylisothiocyanate has been investigated. This new ligand, on coupling with monoclonal antibodies, should form a stable thiourea linkage via a reaction of the isothiocyanate moiety with the epsilon-amino group of lysine.
Methods: The starting material, 125I- or 131I-labeled 3-iodophenylisothiocyanate, was synthesized in good radiochemical yield with a purity of > 99% via a reaction of electrophilic radioiodine with 3-tri-n-butylstannylphenylisothiocyanate. The coupling of radiolabeled 3-iodophenylisothiocyanate with monoclonal antibodies D612 and 17-1A in different buffers was investigated. Biodistribution of these radioimmunoconjugates in athymic nude mice bearing colon cancer xenografts was studied.
Results: The results demonstrated that monoclonal antibodies labeled with 3-iodophenylisothiocyanate retained specific binding activity and showed significantly less thyroid uptake than did directly radioiodinated antibodies prepared by the iodogen method. Radioimaging and biodistribution studies demonstrated that uptake of these new radioimmunoconjugates in LS174T colon cancer xenografts was similar to that of directly radioiodinated antibodies, while their uptake in other normal tissues was similar to or lower than that of directly radioiodinated antibodies.
Conclusions: These results demonstrate that high specific activity can be achieved and pure 3-iodophenylisothiocyanate can be derived easily from 3-tri-n-butyl-phenylisothiocyanate. Biodistribution and imaging studies revealed that monoclonal antibodies conjugated with 3-iodophenylisothiocyanate are metabolically more stable in vivo in an animal model than directly radioiodinated antibodies, and that these new radioimmunoconjugates are localized selectively in tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1097-0142(19940201)73:3+<808::aid-cncr2820731310>3.0.co;2-r | DOI Listing |
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) composed of tau aggregates. Research in animal models has generated hypotheses on the underlying mechanisms of the interaction between Aβ and tau pathology. In support of this interaction, results from clinical trials have shown that treatment with anti-Aβ monoclonal antibodies (mAbs) affects tau pathology.
View Article and Find Full Text PDFBackground: The key advantage of active immunization is the induction of sustained, polyclonal antibody responses that are readily boosted by occasional immunizations. Recent clinical trial outcomes for monoclonal antibodies lecanemab and donanemab, establish the relevance of targeting pathological Abeta for clearing amyloid plaques in Alzheimer's disease. ACI-24.
View Article and Find Full Text PDFBackground: We have previously reported the neuroprotective effects of fosgonimeton in amyloid-β (Aβ)-driven preclinical models of Alzheimer's disease (AD). Fosgonimeton is an investigational small-molecule positive modulator of the neurotrophic hepatocyte growth factor (HGF) system, currently under investigation for mild-to-moderate AD (LIFT-AD; NCT04488419). Given the recent approvals of Aβ-targeting monoclonal antibodies (Aβ-mAbs) for the treatment of AD, and growing recognition that combination therapies may improve treatment outcomes, we sought to investigate the preclinical activity of fosgonimeton in the presence of Aβ-mAbs.
View Article and Find Full Text PDFBackground: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFBackground: A large body of evidence now indicates that the most pathogenic species of Aß in Alzheimer's disease (AD) consist of soluble toxic oligomers (AßO) as opposed to insoluble fibrils and monomers. Using our computational platform, we identified 4 different AßO-restricted conformational B cell epitopes (300, 301, 303, 305) that were tested as vaccines for their ability to induce an antibody response that selectively targets toxic AßO, without inducing potentially detrimental B or T cell responses against plaque or normal Aß. A novel ex vivo approach was then used to select an optimal vaccine configuration amongst the 15 possible combinations of the 4 epitopes to provide maximal binding to a toxic oligomer-enriched low molecular weight (LMW) fraction of soluble AD brain extracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!