Although analogs and metabolites of vitamin D have been tested for their calciotropic activity, very little information has been available concerning the effects of these compounds on gene expression. In this study one analog of vitamin D, 1,25,28-trihydroxyvitamin D2 [1,25,28-(OH)3D2], and one metabolite, 1,24,25-trihydroxyvitamin D3 [1,24,25-(OH)3D3], were tested for their effect on intestinal calbindin-D9K mRNA and protein as well as for their effect on intestinal calcium absorption and bone calcium mobilization. These compounds were also evaluated for their ability to compete for rat intestinal 1,25-(OH)2D3 receptor sites and to induce differentiation of human leukemia (HL-60) cells as indicated by reduction of nitro blue tetrazolium. In vivo studies involved intrajugular injection of 12.5 ng 1,25-(OH)2D3 or test compound to vitamin D-deficient rats and sacrifice after 18 h. 1,25,28-Trihydroxyvitamin D2 had no effect on intestinal calcium absorption, bone calcium mobilization, or intestinal calbindin-D9K protein and mRNA. Competitive binding to 1,25-(OH)2D3 receptors was 0.8% of that observed using 1,25-(OH)2D3. However, 20- and 40-fold higher doses of 1,25,28-(OH)3D2 (250 and 500 ng) resulted in significant inductions in calbindin-D9K protein and mRNA (3.5 to 7.4-fold), although doses as high as 800 ng were found to have no effect on intestinal calcium absorption or bone calcium mobilization.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbmr.5650081211 | DOI Listing |
Parasitol Int
December 2024
Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan. Electronic address:
Through studies of new antimalarial drugs, we identified 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) as a potential drug candidate. Here, we analyzed the antimalarial action of a transdermal formulation (td) of N-89, designed for easy use by children, using Plasmodium berghei-infected mice as a model for malaria patients.
View Article and Find Full Text PDFFood Chem
December 2024
Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China. Electronic address:
Although rice bran active peptide (RBAP) has potent antioxidant properties, its practical applications have been limited by its low bioavailability. In this study, we hypothesized that pH-responsive hydrogels prepared from the ionic gelation between chitosan and alginate could be a promising delivery system of short-chain peptides, like RBAP, for protecting them from chemical degradation during digestion and improving their functionality. The hydrogel beads retained RBAP in the gastric environment due to strong interactions between two biopolymers and RBAP, followed by a sustained release of more than 70 % peptide in the intestinal condition, thus improving its gastrointestinal stability.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, 3000 Santa Fe, Argentina. Electronic address:
Three microcapsule formulations with 2.7, 5.5 and 10.
View Article and Find Full Text PDFSci Rep
December 2024
Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural research (INRA), Avenue Ennasr, BP 415 Rabat principal, Rabat, 10090, Morocco.
The phytochemical, nutritional, and biological features of wild carob pulp from Tanzight (TN), Ait-Waada (AW), and Tizi-ghnayn (TG) in Azilal were studied. The results of the study reveal that the carob pulp examined has a low-fat level. AW had the most total sugar (78.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!