Neurites induced by staurosporine in PC12 cells are resistant to colchicine and express high levels of tau proteins.

Mol Pharmacol

Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Israel.

Published: January 1994

Staurosporine, a protein kinase inhibitor, induces neurite outgrowth in pheochromocytoma cells and, therefore, may serve as a potential prototype for neurotropic drugs. The principal aim of the present study was to characterize the cytoskeletal properties of neurites induced in pheochromocytoma cells by staurosporine, in comparison to those induced by nerve growth factor, with emphasis on tubulin and tau proteins. Two major findings are described: a) staurosporine rapidly induces outgrowth of neurites that are resistant to colchicine treatment; and b) staurosporine treatment causes a rapid increase in tau protein levels, with a time course similar to the initiation of its neurotropic effects. The following observations exclude tubulin as the cellular target for staurosporine action: a) the level, cellular distribution, and assembly properties of tubulin are not affected by staurosporine treatment; and b) colchicine uptake, its binding to tubulin, and its interference with tubulin polymerization are not changed by staurosporine. On the other hand, staurosporine treatment causes a transient, dose-dependent increase in tau protein levels. This increase, which is already evident after 1 hr, reaches a maximum of 2 to 3 fold after 5 hr of treatment and declines to basal level within the next 10 to 15 hr. The rapid, transient increase of tau protein levels induced by staurosporine is reminiscent of its neurotropic properties. Here we characterize and compare the cytoskeletal properties of neurites induced by treatment with staurosporine and with nerve growth factor, and we offer a mechanistic explanation for the rapid stabilization of staurosporine induced neurites.

Download full-text PDF

Source

Publication Analysis

Top Keywords

neurites induced
12
staurosporine
12
staurosporine treatment
12
increase tau
12
tau protein
12
protein levels
12
induced staurosporine
8
resistant colchicine
8
tau proteins
8
pheochromocytoma cells
8

Similar Publications

Mutations in hnRNP A1 drive neurodegeneration and alternative RNA splicing of neuronal gene targets.

Neurobiol Dis

January 2025

Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada. Electronic address:

RNA binding protein dysfunction is a pathogenic feature of multiple neurological diseases, including multiple sclerosis (MS). Neurodegeneration (the loss of, or damage to neurons and axons) is the primary driver of disease progression in MS. Herein, we utilized a novel, neuron-specific model of neurodegeneration by transducing primary mouse neurons with mutant forms of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) identified from MS patients, including one within the M9-nuclear localization sequence of hnRNP A1 (A1(P275S)) and a second in the prion-like domain of hnRNP A1 (A1(F263S)) to test the hypothesis that neuronal hnRNP A1 dysfunction drives neurodegeneration in MS.

View Article and Find Full Text PDF

The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits diverse axonal responses, beyond engaging the netrin receptor DCC and UNC5 family members, remains elusive. Here, we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: Attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1.

View Article and Find Full Text PDF

Introduction: Neurotrophic factors are widely known for their protective effect on spiral ganglion neurons (SGN) and the protection of these neurons is of great importance to optimize Cochlear Implants, which directly stimulate SGN in deaf patients. Previous studies have identified Cometin - also known as Meteroin-like - to be neuroprotective and beneficial for metabolic disorders. The aim of our study was to investigate the effects of different concentrations of recombinant human Cometin (hCometin) on SGN in regard to neuroprotection and neurite outgrowth and to evaluate its neurite guidance potential using a neurite outgrowth chamber.

View Article and Find Full Text PDF

After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice.

View Article and Find Full Text PDF

α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!