Scanning acoustic microscope studies of the elastic properties of osteons and osteon lamellae.

J Biomech Eng

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106.

Published: November 1993

Scanning acoustic microscopy (SAM) provides the means for studying the elastic properties of a material at a comparable level of resolution to that obtained by optical microscopy for structural studies. SAM is nondestructive and permits observation of properties in the interior of materials which are optically opaque. Two modes of ultrasonic signals have been used in a Model UH3 Scanning Acoustic Microscope (Olympus Co., Tokyo, Japan) as part of a continuing study of the microstructural properties of bone. The pulse mode, using a single narrow pulse in the range of 30 MHz to 100 MHz, has been used to survey the surface and interior of specimens of human and canine femoral compact cortical bone at resolutions down to approximately 30 microns. To obtain more detailed information at significantly higher resolution, the burst mode, comprised of tens of sinusoids, has been used at frequencies from 200 MHz to 600 MHz. This has provided details of both human and canine single osteons (or haversion systems) and ostenoic lamellae at resolutions down to approximately 1.7 microns, well within the thickness of a lamella as viewed in a specimen cut transverse to the femoral axis.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.2895537DOI Listing

Publication Analysis

Top Keywords

scanning acoustic
12
acoustic microscope
8
elastic properties
8
human canine
8
resolutions microns
8
microscope studies
4
studies elastic
4
properties
4
properties osteons
4
osteons osteon
4

Similar Publications

(Fabricius, 1794) (Lepidoptera: Pyralidae) is a pyralid moth with two ears in its abdomen that it uses for detecting mates and predators. Despite no connection between the two ears having been found and no other elements having been observed through X-ray scans of the moth, it seems to be capable of directional hearing with just one ear when one of them is damaged. It is therefore suspected that the morphology of the eardrum can provide directional cues for sound localization.

View Article and Find Full Text PDF

Modified basalt microfiber-reinforced polyurethane elastomer composites were prepared by a semi-prepolymer method with two different silane coupling agents (KH550 and KH560) in this study. Infrared spectroscopy was used to quantify the degree of microphase separation and analyze the formation of hydrogen bonding in polyurethane. The interfacial surface and the morphology of fibers and composites from tensile fracture were examined by a scanning electron microscope.

View Article and Find Full Text PDF

Background: Vestibular schwannoma (VS) is a common intracranial tumor that affects patients' quality of life. Reliable imaging techniques for tumor volume assessment are essential for guiding management decisions. The study aimed to compare the ABC/2 method to the gold standard planimetry method for volumetric assessment of VS.

View Article and Find Full Text PDF

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

Concrete, as the most widely used construction material globally, is prone to cracking under the influence of external factors such as mechanical loads, temperature fluctuations, chemical corrosion, and freeze-thaw cycles. Traditional concrete crack repair methods, such as epoxy resins and polymer mortars, often suffer from a limited permeability, poor compatibility with substrates, and insufficient long-term durability. Microbial biogrouting technology, leveraging microbial-induced calcium carbonate precipitation (MICP), has emerged as a promising alternative for crack sealing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!