Lipopolysaccharide (LPS) is a potent bone resorbing factor. We investigated the effect of LPS on osteoclast formation in three types of cultures. LPS inhibited osteoclast formation induced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], in a dose-dependent manner, in cultures of whole bone marrow cells without dexamethasone. LPS increased the amount of granulocyte-macrophage colony stimulating factor (GM-CSF) in the culture supernatant, and anti-GM-CSF antiserum almost abolished the inhibition of osteoclast formation by LPS, thereby indicating that GM-CSF generated by treatment with LPS may be responsible for the inhibition of osteoclast formation. In cultures with dexamethasone, the amount of GM-CSF was decreased to one-third of that with 1,25(OH)2D3 alone and was not changed by treatment with LPS. In this culture system, LPS enhanced osteoclast formation. In the coculture system of nonadherent bone marrow cells and a stromal cell line in the presence of 1,25(OH)2D3 and dexamethasone, where no detectable GM-CSF was present in the supernatant, LPS markedly enhanced osteoclast formation, whereas exogenously added GM-CSF (100 pg/ml) almost completely inhibited osteoclast formation. LPS stimulated pit formation on dentin slices by the osteoclast-like cells formed by in vitro culture system.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.134.2.8299579DOI Listing

Publication Analysis

Top Keywords

osteoclast formation
28
bone marrow
12
lps
10
formation
9
granulocyte-macrophage colony
8
colony stimulating
8
stimulating factor
8
inhibited osteoclast
8
marrow cells
8
inhibition osteoclast
8

Similar Publications

Dental pulp stem cell-derived intracellular vesicles prevent orthodontic relapse by inhibiting PI3K/Akt/NF-κB-mediated osteoclast activity.

Stem Cell Res Ther

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.

Background: Orthodontic relapse, the undesired deviation of teeth from their corrected positions, remains a significant challenge in clinical orthodontics. Incomplete periodontal bone remodeling has been identified as a key factor in this process. Despite decades of research, currently there are no effective strategies to prevent relapse.

View Article and Find Full Text PDF

Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms.

View Article and Find Full Text PDF

To investigate the effect of the sizes of osteon-like concentric microgroove structures on the osteoclastic differentiation of macrophages on titanium surfaces, and to provide reference for the surface modification of implants. The silicon wafers sputtered with titanium were selected as the control group (smooth surface specimens) and four concentric groups (concentric circles with the maximum diameter of 200 μ m, the minimum diameter of 20 μ m, the spacing of concentric circles of 10 or 30 μm, the width of microgrooves of 10 or 30 μm, and the depth of microgrooves of 5 or 10 μm) specimens (the total sample size in each group was 27). The width of microgrooves of C10-5 and C10-10 groups was 10 μm, the depth was 5 and 10 μm, and the width of microgrooves of C30-5 and C30-10 groups was 30 μ m, the depth was 5 and 10 μ m, respectively.

View Article and Find Full Text PDF

Molecular mechanism of mitochondrial autophagy mediating impaired energy metabolism leading to osteoporosis.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Osteoporosis (OP) is a bone metabolic disease caused by decreased bone mass leading to destruction of bone microstructure. Treatment of OP is characterized by a lifelong nature, causing extreme financial and psychological burdens to patients. Hormonal abnormalities, cellular autophagy, Ferroptosis, and oxidative stress are all part of the intricate and varied pathophysiology of OP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!