It was the aim of this study to design mouse monoclonal antibodies (MAbs) that can inhibit the invasion of breast cancer cells in the host tissue. Therefore, MAbs were raised against epitopes on the extracellular domain of SK-BR-3 human breast cancer cells, and biological assays were performed to test the capability of the MAbs to inhibit cell substrate adhesion. MAb 14C5 bound an extracellular plasma membrane antigen of SK-BR-3 and MCF-7 human breast cancer cells and inhibited the cell substrate adhesion of these cells in vitro. The MAb delayed the adhesion of MCF-7 and SK-BR-3 cells on precultured embryonic heart fragments (PHFS). It inhibited the destruction of the PHF by MCF-7 cells and the invasion of the PHF by SK-BR-3 cells. The MAb reacted with an epitope on the cell membrane of in situ and invasive ductal carcinomas of the breast in immunohistochemistry. Poorly differentiated, highly invasive ductal carcinomas show extensive staining of long plasma membrane extensions. Normal multilayered epithelia, normal connective tissue, and tumors derived from these tissues as well as normal breast tissue were negative. From both cell lines a protein complex consisting of two subunits with molecular weight of 50 and 90 kd, respectively, was immunoprecipitated. It is concluded that the 14C5 antigen plays a role in cell substrate adhesion and subsequently also in invasion of breast cancer cells. The 14C5 MAb was able to inhibit cell substrate adhesion and invasion in vitro of breast cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1887109PMC

Publication Analysis

Top Keywords

cell substrate
20
substrate adhesion
20
breast cancer
20
cancer cells
20
cells
9
cell
8
cell membrane
8
membrane antigen
8
mabs inhibit
8
invasion breast
8

Similar Publications

Neuroimmunometabolism describes how neuroimmune cells, such as microglia, adapt their intracellular metabolic pathways to alter their immune functions in the CNS. Emerging evidence indicates that neurons also orchestrate the microglia mediated immune response through neuro-immune crosstalk perhaps through metabolic signalling. However, little is known about how the brain's metabolic microenvironment and microglial intracellular metabolism orchestrate the neuroimmune response in healthy and diseased brains.

View Article and Find Full Text PDF

Stilbenes are specialized metabolites that are particularly abundant in species. Although the biosynthetic pathways of stilbenes have been well-characterized, the role of specific peroxidases in stilbene oligomerization remains to be investigated. In this study, we used grapevine cell cultures to characterize the functional role of peroxidase 4 (VvPRX4) in the production of resveratrol oligomers after elicitation with methyl jasmonate (MeJA).

View Article and Find Full Text PDF

Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission.

PLoS Comput Biol

January 2025

Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.

Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.

View Article and Find Full Text PDF

Very-low-carbohydrate diets (LCHF; <50g/day) have been debated for their potential to lower pre-exercise muscle and liver glycogen stores and metabolic efficiency, risking premature fatigue. It is also hypothesized that carbohydrate ingestion during prolonged exercise delays fatigue by increasing carbohydrate oxidation, thereby sparing muscle glycogen. Leveraging a randomized crossover design, we evaluated performance during strenuous time-to-exhaustion (70%⩒O) tests in trained triathletes following 6-week high-carbohydrate (HCLF, 380g/day) or very-low-carbohydrate (LCHF, 40g/day) diets to determine (i) if adoption of the LCHF diet impairs time-to-exhaustion performance, (ii) whether carbohydrate ingestion (10g/hour) 6-12x lower than current CHO fuelling recommendations during low glycogen availability (>15-hour pre-exercise overnight fast and/or LCHF diet) improves time-to-exhaustion by preventing exercise-induced hypoglycemia (EIH; <3.

View Article and Find Full Text PDF

α-Ketoisocaproic Acid Disrupts Mitochondrial Bioenergetics in the Brain of Neonate Rats: Molecular Modeling Studies of α-ketoglutarate Dehydrogenase Subunits Inhibition.

Neurochem Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!