AI Article Synopsis

  • A new cytolysin gene called slyA has been found in Salmonella, which causes hemolysis on blood agar and appears to be distinct from other toxins.
  • The slyA gene is consistently present in all Salmonella strains tested, as well as in related bacteria like Shigella and certain E. coli, but is absent in other Enterobacteriaceae.
  • Purified slyA, known as salmolysin, exhibits hemolytic and cytolytic properties, and studies indicate it plays a crucial role in Salmonella's virulence by helping it survive within mouse macrophages.

Article Abstract

A Salmonella gene encoding a cytolysin has been identified by screening for hemolysis on blood agar. DNA sequence analyses together with genetic mapping in Salmonella suggest that it is unrelated to other toxins or hemolysins. The gene (slyA) is present in every strain of Salmonella examined, in Shigella, and in enteroinvasive Escherichia coli but not in other Enterobacteriaceae. SlyA (salmolysin) purified from a derivative of the original clone has hemolytic and cytolytic activity and has a molecular weight predicted by the DNA sequence. The median lethal dose and infection kinetics in mice suggest that the toxin is required for virulence and facilitates Salmonella survival within mouse peritoneal macrophages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC42974PMC
http://dx.doi.org/10.1073/pnas.91.2.489DOI Listing

Publication Analysis

Top Keywords

dna sequence
8
salmonella
5
cytolysin encoded
4
encoded salmonella
4
salmonella required
4
required survival
4
survival macrophages
4
macrophages salmonella
4
salmonella gene
4
gene encoding
4

Similar Publications

A novel ionic liquid MALDI matrix, 3-aminoquinoline/2',4',6'-trihydroxyacetophenone monohydrate (3-AQ/THAP), was developed for the rapid qualitative and quantitative detection of miRNA from biological samples. Compared to the traditional matrix 2,5-dihydroxybenzoic acid (DHB) and previously reported oligonucleotide-specific matrices, such as 3-aminopicolinic acid (3-APA), 3-hydroxypicolinic acid (3-HPA), and 6-aza-2-thiothymine (ATT), the 3-AQ/THAP matrix offers several advantages. It produces fewer alkali metal adduct peaks, exhibits higher sensitivity, and ensures better spot-to-spot repeatability.

View Article and Find Full Text PDF

We lack tools to edit DNA sequences at scales necessary to study 99% of the human genome that is noncoding. To address this gap, we applied CRISPR prime editing to insert recombination handles into repetitive sequences, up to 1697 per cell line, which enables generating large-scale deletions, inversions, translocations, and circular DNA. Recombinase induction produced more than 100 stochastic megabase-sized rearrangements in each cell.

View Article and Find Full Text PDF

Endometrial cancer (UCEC) is the most prevalent gynecological malignancy in high-income countries, and its incidence is rising globally. Although early-stage UCEC can be treated with surgery, advanced cases have a poor prognosis, highlighting the need for effective molecular biomarkers to improve diagnosis and prognosis. In this study, we analyzed mRNA and miRNA sequencing data from UCEC tissues and adjacent non-cancerous tissues from the TCGA database.

View Article and Find Full Text PDF

Motivation: Genotyping of bi-parental populations can be performed with low-coverage next-generation sequencing (LC-NGS). This allows the creation of highly saturated genetic maps at reasonable cost, precisely localized recombination breakpoints (i.e.

View Article and Find Full Text PDF

Passion fruit (Passiflora edulis) is a commercially important crop known for its nutritional value, high antioxidant content, and use in beverages and desserts. Gulupa baciliform virus A (GBVA), tentatively named Badnavirus in the family Caulimoviridae, is a cryptic circular double-stranded DNA (dsDNA, ≈6,951 bps) virus recently reported in Colombia with asymptomatic infection of passion fruit (Sepúlveda et al. 2022).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!