Zaprinast increases cyclic GMP levels in plasma and in aortic tissue of rats.

Eur J Pharmacol

Department of Vascular and Biochemical Pharmacology, Sterling Winthrop Pharmaceuticals Research Division, Collegeville, PA 19426-0900.

Published: November 1993

The purpose of this study was to determine if significant relationships exist between plasma and aortic cyclic GMP (cGMP) levels and pharmacodynamic effect after the i.v. administration of the cGMP-selective phosphodiesterase inhibitor zaprinast to conscious, spontaneously hypertensive rats. Zaprinast dose-dependently increased plasma and aortic cGMP levels at 10, 18 and 30 mg/kg and decreased mean arterial blood pressure (MAP) at 18 and 30 mg/kg. The concentrations of cGMP in the plasma and in the aorta were significantly correlated (r = 0.765, P < 0.0001). The changes in MAP were significantly correlated to aortic (r = -0.750, P < 0.0001) and plasma (r = -0.762, P < 0.0001) cGMP levels. We conclude that plasma cGMP may be an index of cGMP-selective phosphodiesterase inhibition in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-2999(93)90525-mDOI Listing

Publication Analysis

Top Keywords

plasma aortic
12
cgmp levels
12
cyclic gmp
8
cgmp-selective phosphodiesterase
8
plasma
6
cgmp
5
zaprinast increases
4
increases cyclic
4
levels
4
gmp levels
4

Similar Publications

Background: Abdominal aortic aneurysm (AAA) is characterized by the proteolytic breakdown of the extracellular matrix, leading to dilatation of the aorta and increased risk of rupture. Biomarkers that can predict major adverse aortic events (MAAEs) are needed to risk stratify patients for more rigorous medical treatment and potential earlier surgical intervention.

Objectives: The primary objective was to identify the association between baseline levels of these biomarkers and MAAEs over a period of 5 years.

View Article and Find Full Text PDF

Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.

View Article and Find Full Text PDF

Background: Acute type A aortic dissection (ATAAD) has a high mortality, and acute aortic repair is the only curative treatment. In patients treated with factor Xa (FXa) inhibitors, the risk of severe disease-related complications such as cardiac tamponade and hemodynamic shock must be balanced against the potential for severe perioperative bleeding. The aim was to study intraoperative changes in plasma levels of the FXa inhibitor apixaban when using hemoadsorption during acute thoracic aortic repair.

View Article and Find Full Text PDF

This study aimed to investigate the potential mechanism and the compatibility significance of Tanyu Tongzhi Formula in treating atherosclerosis(AS) in mice based on the transforming growth factor-β(TGF-β)/Smad2/3 signaling pathway. Eight C57BL/6J mice were as assigned to a normal control group and fed a regular diet, while 35 ApoE~(-/-) mice of the same strain were fed a high-fat diet for 8 weeks to establish an AS model. The model mice were randomly divided into a model group, a Tanyu Tongzhi group(18.

View Article and Find Full Text PDF

ADAMTS4-Specific MR Peptide Probe for the Assessment of Atherosclerotic Plaque Burden in a Mouse Model.

Invest Radiol

January 2025

From the Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany (D.B.M., J.O.K., J.B., A.K., J.M., J.L.H., C.R., M.T., B.H., M.R.M.); Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany (D.B.M., J.O.K., J.B., A.K., L.C.A., M.R.M.); Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany (J.O.K.); Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing, Berlin, Germany (J.O.K., M.G.W.); Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany (A.K.); Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany (J.L.H.); Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.V., P.N., U.K.); Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany (A.L.); DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany (A.L.); and Division of Cardiology, Massachusetts General Hospital, Harvard University, Boston, MA (W.C.P.).

Introduction: Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!