Radiolabeled substrate degradation assays and gelatin zymography are routinely employed to assay 72 kDa gelatinase A (MMP-2) and 92 kDa gelatinase B (MMP-9) in biological fluids. Enzyme-linked immunosorbent assays (ELISA) have recently been developed for the quantitation of these matrix metalloproteinases (MMP). In this study, we have compared ELISA to standard substrate degradation assays for measurement of MMP-2 and MMP-9 in human plasma and tumor-conditioned media. Gelatin Sepharose chromatography and gel filtration chromatography were employed as partial purification procedures for MMP-2 and MMP-9. The ELISA data for MMP-2 and MMP-9 are linear on a log:log regression curve over a wide range of MMP concentrations and are specific for the designated gelatinase, with no overlap detected with related metalloproteinases. The minimum detectable concentrations of MMP-2 and MMP-9 were approximately 0.5 ng/ml and 0.2 ng/ml, respectively, in the ELISA as compared to 4 ng/ml and 3 ng/ml, respectively, in gelatin zymography. The [3H]gelatin degradation assay required a combination of > 50 ng/ml of MMP-2 and MMP-9 for detection. Although gelatin zymography was less sensitive than ELISA (primarily due to the smaller sample volume employed) and was more difficult to quantitate, this procedure offers the important advantage of being able to distinguish between latent and activated gelatinases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01784329 | DOI Listing |
Oncol Res
January 2025
Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
Background: Clear cell renal carcinoma (ccRCC), the leading histological subtype of RCC, lacks any targeted therapy options. Although some studies have shown that early growth response factor 1 (EGR1) has a significant role in cancer development and progression, its role and underlying mechanisms in ccRCC remain poorly understood.
Methods: The Cancer Genome Atlas (TCGA) database was utilized to examine the expression of EGR1 in ccRCC.
Front Biosci (Landmark Ed)
January 2025
Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea.
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey.
Sepsis is a clinical condition causing tissue damage as a result of infection and an exaggerated immune response. Sepsis causes 11 million deaths annually, a third of which are associated with acute lung injury (ALI). Rapid and effective treatment is crucial to improve survival rates.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy.
Irisin is a newly discovered 12 kDa messenger protein involved in energy metabolism. Irisin affects signaling pathways in several types of cancer; however, the role of irisin in metastatic melanoma (MM) has not been described yet. We explored the biological effects of irisin in in vitro models of MM cells (HBL, LND1, Hmel1 and M3) capable of the oncogenic activation of BRAF.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!