It is of interest to inquire whether agents that uncouple or deenergize membranes cause concomitant structural changes. The agents considered here are the uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone and the bacteriocidal protein colicin E1, agents for which there is some precedent for believing that they interact with membranes. In intact E. coli ML 308-225 cells the inhibition of [14C]-PROLINE ACtive transport by FCCP increases with uncoupler concentration from approximately 20% at 2 muM to approximately 100% at 5 muM. The increase in the rotational relaxation time (rho) of the cell-bound fluorescent probe N-phenyl-1-naphthylamine (PhNap)1 and 8-anilino-1-naphthalene-sulfonate (ANS) under these conditions shows the same dependence on FCCP concentration. For cells treated with EDTA to remove part of the outer lipopolysaccharide layer, inhibition of proline transport and the increase in rho value of ANS show the same dependence on FCCP concentration with saturation at 0.3 muM. EDTA treatment causes a large increase in the binding and rotational relaxation time of PhNap, the latter quantity approaching a value obtained with purified inner membrane. Similar effects are produced in untreated cells by 5muM FCCP...

Download full-text PDF

Source
http://dx.doi.org/10.1002/jss.400050304DOI Listing

Publication Analysis

Top Keywords

active transport
8
rotational relaxation
8
relaxation time
8
dependence fccp
8
fccp concentration
8
changes coli
4
coli cell
4
cell envelope
4
envelope structure
4
structure caused
4

Similar Publications

Background: A wide range of school interventions have been launched to increase childrens' physical activity. Evaluation of the effectiveness of interventions requires suitable study designs and feasible quantitative evaluations relating to the school setting. The purpose of this study was to assess the evaluation design and methods for data collection, in order to make decisions about approaching forthcoming studies of the effectiveness of active school travel (AST) interventions.

View Article and Find Full Text PDF

This study addresses the issue of effective carrier injection to quantum wells in laser diode structures. The nitride light emitting structures used in this study were fabricated by Metal-Organic Vapor Phase Epitaxy (MOVPE). We developed three distinct sets of samples, with varying quantum barrier thickness, different QWs indium composition and different position relative to the p- and n-sides of the structure.

View Article and Find Full Text PDF

Ultrasensitive electrochemical detection of gallic acid in beverages based on nitrogen-doped multi-walled carbon nanotube networks embellished with cobalt 2-methylimidazole nanoparticles.

Food Chem

January 2025

Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:

This work presents a convenient and easy-to-operate method for synthesizing the functionally integrated nanocomposite of nitrogen-doped multi walled carbon nanotube networks (N-CNTs) and cobalt 2-methylimidazole (ZIF-67) nanoparticles. The N-CNTs@ZIF-67 nanocomposite was utilized to design a novel electrochemical sensing platform for detecting gallic acid (GA). The N-CNTs@ZIF-67 modified glass carbon electrode (GCE) demonstrated high sensitivity for GA electrochemical detection (LOD: 10.

View Article and Find Full Text PDF

Skin represents an effective barrier against the penetration of external agents into the human body. Nevertheless, recent research has shown that small particles, especially in the nanosized range, can not only penetrate through the skin but also work as vectors to transport active molecules such as contrast agents or drugs. This knowledge has opened new perspectives on nanomedicine and controlled drug delivery.

View Article and Find Full Text PDF

Gold Nanorods Decorated by Conjugated Microporous Polymers for Infrared Responsive Cytostatic Drug Delivery.

Langmuir

January 2025

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.

Near-infrared (NIR) controlled drug delivery systems have drawn a lot of attention throughout the past few decades due to the deep penetration depth and comparatively minor side effects of the stimulus. In this study, we introduce an innovative approach for gastric cancer treatment by combining photothermal infrared-sensitive gold nanorods (AuNRs) with a conjugated microporous polymer (CMP) to create a drug delivery system tailored for transporting the cytostatic drug 5-fluorouracil (5-FU). CMPs are fully conjugated networks with high internal surface areas that can be precisely tailored to the adsorption and transport of active compounds through the right choice of chemical functionalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!