Pediatric patients with acute lymphoblastic leukemia (ALL) are at an increased risk of thromboembolic events. Potential responsible mechanisms include the disease process itself, treatment with chemotherapeutic agents (particularly L-Asparaginase [ASP]), or a combination of the disease and treatment. We studied thrombin regulation in 26 consecutive children with ALL and 14 healthy age-matched controls by: (1) plasma concentrations of prothrombin; (2) plasma inhibition of 125I-alpha-thrombin; and (3) four biochemical markers of in vivo thrombin activation (thrombin complexed to its inhibitor antithrombin III [ATIII; TAT], prothrombin fragment 1.2 (F1.2), activated protein C complexed to the inhibitors alpha 1 antitrypsin [APCAT]), and protein C inhibitor (APC-PCI). Measurements were made at presentation before treatment, after treatment with ASP alone, and during combination chemotherapy with and without ASP. At presentation, the capacity to generate thrombin (reflected by plasma prothrombin concentrations) and the capacity to inhibit thrombin (125I-alpha-thrombin--inhibitor complex formation) were similar in children with ALL compared with that for healthy children. After ASP alone or as part of combination chemotherapy, prothrombin levels were preserved, whereas plasma inhibition of 125I-alpha-thrombin decreased significantly because of a decrease in plasma concentrations of inhibitors, most importantly ATIII. After combination chemotherapy without ASP, plasma concentrations of ATIII and the capacity to inhibit 125I-alpha-thrombin returned to normal values, whereas prothrombin levels increased above control values. Thrombin generation in vivo also differed from healthy controls. At presentation, plasma concentrations of three of four markers of in vivo thrombin activity (TAT, F1.2, APCAT, but not APC-PCI) were increased in children with ALL. Neither ASP alone nor combination chemotherapy with or without ASP significantly altered values of these three markers. In summary, although the in vitro capacity to generate thrombin was preserved, the in vitro capacity to inhibit 125I-alpha-thrombin decreased after ASP therapy. Evidence for increased endogenous thrombin generation was documented in children with ALL at presentation and throughout treatment. We speculate that poor regulation of this thrombin may contribute to thrombotic complications in children with ALL.

Download full-text PDF

Source

Publication Analysis

Top Keywords

plasma concentrations
16
combination chemotherapy
16
thrombin generation
12
asp combination
12
chemotherapy asp
12
capacity inhibit
12
thrombin
11
increased endogenous
8
endogenous thrombin
8
acute lymphoblastic
8

Similar Publications

Improving Understanding of Fexofenadine Pharmacokinetics to Assess Pgp Phenotypic Activity in Older Adult Patients Using Population Pharmacokinetic Modeling.

Clin Pharmacokinet

January 2025

Clinical Pharmacology and Toxicology Service, Anesthesiology, Pharmacology and Intensive Care Department, Geneva University Hospitals, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.

Background And Objective: Fexofenadine is commonly used as a probe substrate to assess P-glycoprotein (Pgp) activity. While its use in healthy volunteers is well documented, data in older adult and polymorbid patients are lacking. Age- and disease-related physiological changes are expected to affect the pharmacokinetics of fexofenadine.

View Article and Find Full Text PDF

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

Large Variations in Phenylalanine Concentrations Associate Adverse Cardiac Remodelling in Adult Patients With Phenylketonuria-A Long-Term CMR Study.

J Cachexia Sarcopenia Muscle

February 2025

Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany.

Background: Despite a phenylalanine (Phe) restrictive diet, most adult patients with 'classical' phenylketonuria (PKU) maintain life-long Phe concentrations above the normal range and receive tyrosine (Tyr) and protein-enriched diets to maintain acceptable concentrations and ensure normal development. While these interventions are highly successful in preventing adverse neuropsychiatric complications, their long- term consequences are incompletely explored. We observed early cardiomyopathic characteristics and associated hemodynamic changes in adult PKU patients and present here the results of a longitudinal evaluation of cardiac phenotype.

View Article and Find Full Text PDF

Everolimus Through Plasmatic Concentrations in Cancer Patients: Prospective Longitudinal Observational Multicentric Study (DIANA-1 Project).

J Clin Med

December 2024

Pharmacy Department, Institut Català Oncologia (ICO), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet Llobregat, 08908 Barcelona, Spain.

Everolimus, an oral inhibitor of the mammalian target of rapamycin (mTOR), is actually used to prevent organ transplant rejection and treat metastatic breast, renal, and neuroendocrine cancers. Despite significant pharmacokinetic variability among patients, routine therapeutic drug monitoring (TDM) is not commonly used in oncology. The aim of this multicenter, prospective observational cohort study is to assess the prevalence of everolimus minimum concentration at a steady state (Cminss) falling outside the therapeutic range (10-26.

View Article and Find Full Text PDF

Aortic valve calcification results from degenerative processes associated with several pathologies. These processes are influenced by age, chronic inflammation, and high concentrations of phosphate ions in the plasma, which contribute to induce mineralization in the aortic valve and deterioration of cardiovascular health. Environmental factors, such as wood smoke that emits harmful and carcinogenic pollutants, carbon monoxide (CO), and nitrogen oxide (NO), as well as other reactive compounds may also be implicated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!