AI Article Synopsis

  • The study investigates four species of luminous bacteria and identifies nutrient medium components that influence their growth, luminescence intensity, and luciferase production.
  • Key components include nucleic acids, amino acids, and vitamins derived from the hydrolysates of various microorganisms.
  • The presence of these promoting agents significantly enhances the physiological state and ultrastructure of the bacteria, increasing luciferase synthesis by two to three times compared to control conditions.

Article Abstract

The examination of four species of luminous bacteria Photobacterium leiognathi, Photobacterium phosphoreum, Vibrio fischeri and Vibrio harveyi has enabled us to reveal some nutrient medium components effecting growth, luminescence intensity and luciferase synthesis. These agents are nucleic components (nucleotides, nucleotides and amine bases), amino acids and vitamins, which are part of hydrolysates from the biomass of various lithotrophic microorganisms, hydrogen-oxidizing, iron-oxidizing and carboxydobacteria. The effect of promoting agents essentially alters the physiological state and ultrastructure of the cells of luminous bacteria and increases luciferase biosynthesis two- to three-fold compared to a control.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.1170080602DOI Listing

Publication Analysis

Top Keywords

luminous bacteria
12
growth luminescence
8
luminescence luminous
4
bacteria promoted
4
promoted agents
4
agents microbial
4
microbial origin
4
origin examination
4
examination species
4
species luminous
4

Similar Publications

Distinct baseline toxicity of volatile organic compounds (VOCs) in gaseous and liquid phases: Mixture effects and potential molecular mechanisms.

J Hazard Mater

December 2024

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.

Volatile organic compounds (VOCs) are significant pollutants found in various environments, posing health risks. Traditionally, the gaseous VOCs are adsorbed and eluted in liquid phases, and then subjected to toxicity testing, which deviates from the actual exposure scenarios of gaseous VOCs. How the physical states of VOCs (gaseous or liquid) affect their toxicity has not been well understood.

View Article and Find Full Text PDF

Microplastics (MPs) have been detected in various aquatic environments and negatively affect organisms, including marine luminous bacteria. This study investigated the differences in bioluminescence patterns, cell viability, and biofilm formation of strains (LB01 and LB09) when exposed to various concentrations of ground microplastics (GMPs; 0.25%, 0.

View Article and Find Full Text PDF

Photocatalytic rice bran protein/carboxymethyl cellulose/ZrO fiber produced by microfluidics: Formation mechanism, bacteriostasis and strawberry preservation.

Food Chem

February 2025

National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China. Electronic address:

Developing cost-effective and environmentally sustainable active packaging materials remains an important challenge. We have developed rice bran protein (RBP)-based fibers incorporating carboxymethyl cellulose (CMC) and ZrO nanoparticles (ZrO NPs, 0 %-7 %, m/m) using microfluidic spinning. The integration of RBP, CMC, and ZrO NPs formed a robust hydrogen bond network that enhanced the fibers' thermal stability and crystallinity, reduced surface hydrophobicity, and aligned the molecular orientation.

View Article and Find Full Text PDF

This study is the first one that investigates in detail the bacterial intercellular response to the high density of crystallographic defects including vacancies created in Cu by high pressure torsion. To this aim, samples were deformed by high pressure torsion and afterward, their antibacterial properties against Staphylococcus aureus were analyzed in adhesion tests. As a reference an annealed sample was applied.

View Article and Find Full Text PDF

Application of the luminous bacterium Photobacterium phosphoreum for toxicity monitoring of selenite and its reduction to selenium(0) nanoparticles.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia. Electronic address:

Luminous marine bacteria are traditionally used as a bioassay due to the convenience and high rate of registering the intensity of their physiological function - luminescence. This study aimed to develop the application of Photobacterium phosphoreum in traditional and novel fields - toxicity monitoring and biotechnology. We demonstrated (1) effects of selenite ions on bioluminescence, and (2) biotransformation of selenite to selenium(0) in the form of nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!