The cellulase system of Clostridium papyrosolvens C7 was fractionated by means of ion-exchange chromatography into at least seven high-molecular-weight multiprotein complexes, each with different enzymatic and structural properties. The molecular weights of the complexes, as determined by gel filtration chromatography, ranged from 500,000 to 660,000, and the isoelectric points ranged from 4.40 to 4.85. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the complexes showed that each complex had a distinct polypeptide composition. Avicelase, carboxymethyl cellulase, and xylanase activity profiles differed from protein complex to protein complex. Three of the complexes hydrolyzed crystalline cellulose (Avicel). Activity zymograms of gels (following electrophoresis under mildly denaturing conditions) revealed different carboxymethyl cellulase-active proteins in all complexes but xylanase-active proteins in only two of the complexes. The xylanase specific activity of these two complexes was more than eightfold higher than that of the unfractionated cellulase preparation. A 125,000-M(r) glycoprotein with no apparent enzyme activity was the only polypeptide present in all seven complexes. Experiments involving recombination of samples eluted from the ion-exchange chromatography column indicated that synergistic interactions occurred in the hydrolysis of crystalline cellulose by the cellulase system. We propose that the C. papyrosolvens enzyme system responsible for the hydrolysis of crystalline cellulose and xylan is a multicomplex system comprising at least seven diverse protein complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC205015PMC
http://dx.doi.org/10.1128/jb.176.1.70-76.1994DOI Listing

Publication Analysis

Top Keywords

crystalline cellulose
12
complexes
9
system clostridium
8
clostridium papyrosolvens
8
cellulase system
8
ion-exchange chromatography
8
protein complex
8
proteins complexes
8
hydrolysis crystalline
8
system
5

Similar Publications

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

An original design of a simple bioreactor was used to fabricate two tubular, 200 cm long BC structures by culturing B-11267 on a molasses medium. In addition, a tubular BC-based biocomposite with improved mechanical properties was obtained by combining cultivation on the molasses medium with in situ chemical modification by polyvinyl alcohol (PVA). Moreover, the present study investigated the BC production by the B-11267 strain on the media with different molasses concentrations under agitated culture conditions.

View Article and Find Full Text PDF

Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder.

Molecules

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.

Under mild conditions, formic acid effectively separates the components of lignocellulose, removing the majority of the hemicellulose and lignin from the cellulose. However, it has not yet been determined if multiple treatments with fresh formic acid may totally remove hemicellulose and lignin. In this study, fresh formic acid was used to repeatedly pretreat the bamboo powder, and the effect of multiple treatments on the physicochemical structure of the bamboo powder was investigated using changes in fractions, enzymatic hydrolysis, hydrophilicity, cellulose crystallinity, and lignin structure.

View Article and Find Full Text PDF

Almond shells (ASs) are a potential source of cellulose that could be obtained through sustainable methods for their valorisation. Biocomposites (BCs) from polyvinyl alcohol (PVA) and cellulose are interesting materials for developing sustainable packaging materials. BC based on PVA and AS cellulose were obtained by melt blending and compression moulding, by using subcritical water extraction at 160 or 180 °C, and subsequent bleaching with sodium chlorite (C) or hydrogen peroxide (P) to purify cellulose.

View Article and Find Full Text PDF

Rice husk biowaste derived microcrystalline cellulose reinforced sustainable green composites: A comprehensive characterization for lightweight applications.

Int J Biol Macromol

January 2025

Natural Composites Research Group Lab, Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.

This study addresses the issue of waste generation within the food industry, focusing on the conversion of rice husk waste into value-added products. The investigation involves a comprehensive characterization of microcrystalline cellulose extracted from the rice husk and reinforcing them in bio-epoxy resin to determine its feasibility in producing ecofriendly products. The dried rice husk waste was made to undergo a series of treatments, including alkali, acid hydrolysis, and bleaching for extracting high purity microcrystalline cellulose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!