The effect of lipopolysaccharide (LPS) and/or bile acids on rat erythrocyte membranes was studied in vitro. Addition of LPS isolated from E. coli (J5 mutant) into the erythrocyte resulted in the decrease of membrane fluidity as determined by spin labelling using electron paramagnetic resonance (EPR). This was accompanied by membrane fragility. It was found that hydroxyl radicals were generated from erythrocytes treated with LPS by using DMPO spin trapping. However, pretreatment of erythrocytes with taurine-conjugated bile acids was found to modify the membrane response induced by LPS. Taurocholic acid (TCA) and tauroursodeoxycholic acid (TUDCA) prevented the decrease of membrane fluidity induced by LPS, and, as a result, the membrane integrity was maintained although no significant changes were observed in the amount of hydroxyl radicals produced by LPS addition. However, taurochenodeoxycholic acid (TCDCA) exhibited little beneficial effect on the dynamic properties and the function of the erythrocyte membranes, although the hydroxyl radical declined markedly in the erythrocytes. Therefore, it is suggested that TCA and TUDCA have a protective effect against LPS-induced membrane fragility by modulating membrane fluidity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10715769309056s177 | DOI Listing |
Redox Biol
January 2025
Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China. Electronic address:
Adolescent depression is a globally concerned mental health issue, the pathophysiological mechanisms of which remain elusive. Membrane lipids play a crucial role in brain development and function, potentially serving as a crossroad for the abnormalities in neurotransmitters, neuroendocrine, inflammation, oxidative stress, and energy metabolism observed in depressed adolescents. The primary aim of this study was to investigate the erythrocyte membrane lipid profile in adolescent depression.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
Wide-ranging sophisticated physiological activities of cell membranes are associated with changes in fatty acid structure and composition. The cfa gene is a core regulator of cell membrane fatty acid cyclopropanation reaction. Its encoded cyclopropane fatty acid synthase (CFA synthase) catalyzes the binding of unsaturated fatty acid (UFA) to methylene groups, which undergoes cyclopropanation modification to produce cyclopropane fatty acids (CFAs).
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, China.
Sci Total Environ
January 2025
Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland. Electronic address:
J Hazard Mater
January 2025
MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
Lipids, as key components of biological membranes, play vital roles in sensing and initiating plant responses to various abiotic stresses. Here, the alteration of membrane fatty acids in wheat roots under Al stress was investigated using two genotypes differing in Al tolerance, and the role of linoleic acid in Al tolerance was comprehensively explored. Significant differences in the fatty acid profiles were observed, with increased linoleic acid accumulation in the Al-tolerant genotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!