A new model to study cholesterol absorption in the rat intestinal cells is described. Rat intestine epithelial cells IRD98 were incubated with mixed micelles containing bile acid, phospholipid, cholesterol or its nonabsorbable analogue, sitosterol, and trace amounts of [3H]cholesterol or [14C]sitosterol. Cholesterol and sitosterol uptake was then determined following lipid extraction; specific cholesterol uptake was determined as the difference between cholesterol and sitosterol uptake. Cholesterol, but not sitosterol, uptake was time- and dose-dependent and saturable. Loading of cells with non-lipoprotein cholesterol reduced cholesterol, but not sitosterol, uptake in a dose-dependent manner. In contrast, treatment of cells with an inhibitor of cholesterol synthesis, lovastatin, stimulated cholesterol, but not sitosterol, uptake in a dose-dependent manner. Treatment of cells with palmitic, caproic and oleic acids up-regulated specific cholesterol uptake, while linoleic and stearic acids had an opposite effect. None of the fatty acids affected sitosterol uptake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2760(94)90119-8 | DOI Listing |
Pharm Nanotechnol
December 2024
Faculty of Pharmacy, IFTM University, Lodhipur-Rajput, Moradabad, Uttar Pradesh-244102, India.
Introduction: The pharmaceutical industry has paid a lot of attention to solid lipid nanoparticles (SLN) because they show promising drug delivery vehicles.
Method: This work aimed to design and optimize the SLN of β-sitosterol, a hydrophobic drug, to improve solubility and sustained action. An ultrasonication technique after melting was used to design SLN using a randomized response surface Box-Behnken design (BBD).
RSC Adv
November 2024
Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius Réduit 80837 Mauritius
Gold nanoparticles (AuNPs) exhibit different physical properties compared to small molecules, bulk materials and other nanoparticles. Their synthesis using plant extracts, particularly polyflavonoids as phytoreductants, for the conversion of Au(iii) into Au(0) has been reported. In this study, AuNPs were synthesized with extracts, sterols and pure compounds derived from marine sponges using gold(iii) chloride trihydrate.
View Article and Find Full Text PDFJ Lipid Res
November 2024
Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, RA Leiden, The Netherlands. Electronic address:
Food Res Int
September 2024
Department of Pharmacognosy, Faculty of Pharmacy, Damanhur University, Egypt.
Insect Sci
July 2024
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
Insects have to obtain sterols from food due to the inability to synthesize this essential nutrient de novo. For lepidopteran insects, they can convert a variety of phytosterols into cholesterol to meet their growth needs. The final step of the cholesterol biosynthesis is the metabolism of desmosterol catalyzed by 24-dehydrocholesterol reductase (DHCR24).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!