Studies are presented of the biliproteins of Anabaena sp. This filamentous cyanobacterium contains three major biliproteins. Whereas two of these, C-phycocyanin and allophycocyanin, are common to all cyanobacteria, the third, phycoerythrocyanin (gammamax approximately 568 nm) has hitherto not been described and its distribution among cyanobacteria appears to be limited. Anabaena variabilis and Anabaena sp. 6411 allophycocyanin, C-phycocyanin, and phycoerythrocyanin were purified to homogeneity and characterized with respect to molecular weight, isoelectric point, absorption spectrum and amino acid composition. The alpha and beta subunits of each of these proteins were also purified to homogeneity and characterized in the same manner. The tetrapyrrole chromophore content was determined for each of the proteins and subunits. The alpha subunit of phycoerythrocyanin carries a novel phycobiliviolin-like chromophore. This chromophore has not previously been detected in cyanobacterial biliproteins, but has been noted as a prosthetic group of a cryptophytan phycocyanin. Sedimentation equilibrium studies show that at pH 7.0, at protein concentrations of 0.2-0.6 mg/ml, allophycocyanin, C-phycocyanin and phycoerythrocyanin, each exists as a trimeric aggregate, (alphabeta)3, of molecular weight of approximately 105000. Structrual studies of microcrystals of these three biliproteins by electron microscopy and X-ray diffraction reveal a common plan for the construction of higher assembly forms. The major building block appears to be the trimer (alphabeta)3. It is proposed that this is a disc-like structure about 3.0 X 12.0 nm. The individual alpha or beta subunits are roughly spherical, 3 nm in diameter. Allophycocyanin trimers stack to form bundles of rods which form long needles. Both phycocyanin and phycoerythrocyanin form double discs (alphabeta)6 which are visible as ring-shaped structures by electron microscopy. The mode of assembly of the biliprotein structures in the phycobilisome is, as yet, unknown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00416970 | DOI Listing |
Trials
January 2023
Medical Oncology Department, Hôpital Foch, Paris, France.
Background: Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common adverse effects of antineoplastic agents, ranging in prevalence from 19% to over 85%. Clinically, CIPN is a predominantly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. The high prevalence of CIPN among cancer patients makes it a major problem for both patients and survivors, as well as for their health care providers, especially because there is currently no single effective method of preventing CIPN; moreover, the options for treating this syndrome are very limited.
View Article and Find Full Text PDFCurr Neuropharmacol
December 2021
Catalytic Longevity Foundation, 811 B Nahant Ct. San Diego, CA 92019, United States.
The edible cyanobacterium Spirulina platensis and its chief biliprotein C-Phycocyanin have shown protective activity in animal models of diverse human health diseases, often reflecting antioxidant and anti-inflammatory effects. The beneficial effects of C-Phycocyanin seem likely to be primarily attributable to its covalently attached chromophore Phycocyanobilin (PCB). Within cells, biliverdin is generated from free heme and it is subsequently reduced to bilirubin.
View Article and Find Full Text PDFPlant J
May 2020
State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China.
Phycobilisomes are large light-harvesting complexes attached to the stromal side of thylakoids in cyanobacteria and red algae. They can be remodeled or degraded in response to changing light and nutritional status. Both the core and the peripheral rods of phycobilisomes contain biliproteins.
View Article and Find Full Text PDFLife Sci
February 2018
Center for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/ 158 y 190, Cubanacán, Playa, Havana, PO Box 6162, Cuba. Electronic address: http://www.cigb.edu.cu.
Unlabelled: The only three oral treatments currently available for multiple sclerosis (MS) target the relapsing forms of the disease and concerns regarding efficacy, safety and tolerability limit their use. Identifying novel oral disease-modifying therapies for MS, targeting both its inflammatory and neurodegenerative components is still a major goal.
Aim: The scope of this study was to provide evidence that the oral administration of C-Phycocyanin (C-PC), the main biliprotein of the Spirulina platensis cyanobacteria and its tetrapyrrolic prosthetic group, Phycocyanobilin (PCB), exert ameliorating actions on rodent models of experimental autoimmune encephalomyelitis (EAE).
J Proteomics
September 2016
Center of Excellence for Molecular Food Sciences, University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia. Electronic address:
C-phycocyanin, the major protein of cyanobacteria Spirulina, possesses significant antioxidant, anti-cancer, anti-inflammatory and immunomodulatory effects, ascribed to covalently attached linear tetrapyrrole chromophore phycocyanobilin. There are no literature data about structure and biological activities of released peptides with bound chromophore in C-phycocyanin digest. This study aims to identify chromopeptides obtained after pepsin digestion of C-phycocyanin and to examine their bioactivities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!