Background: The study was designed to determine the mediating neuroanatomy of obsessive-compulsive disorder (OCD).

Methods: The short half-life tracer oxygen 15-labeled carbon dioxide was used to allow for repeated positron emission tomographic determinations of regional cerebral blood flow on each of eight patients with OCD during a resting and a provoked (symptomatic) state.

Results: Individually tailored provocative stimuli were successful in provoking OCD symptoms, in comparison with paired innocuous stimuli, as measured by self-report on OCD analogue scales (P = .002). Omnibus subtraction images demonstrated a statistically significant increase in relative regional cerebral blood flow during the OCD symptomatic state vs the resting state in right caudate nucleus (P < .006), left anterior cingulate cortex (P < .045), and bilateral orbitofrontal cortex (P < .008); increases in the left thalamus approached but did not reach statistical significance (P = .07).

Conclusions: These findings are consistent with results of previous functional neuroimaging studies and contemporary neurocircuitry models of OCD. The data further implicate orbitofrontal cortex, caudate nucleus, and anterior cingulate cortex in the pathophysiology of OCD and in mediating OCD symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.1001/archpsyc.1994.03950010062008DOI Listing

Publication Analysis

Top Keywords

regional cerebral
12
cerebral blood
12
blood flow
12
obsessive-compulsive disorder
8
oxygen 15-labeled
8
15-labeled carbon
8
carbon dioxide
8
positron emission
8
ocd symptoms
8
caudate nucleus
8

Similar Publications

Rationale And Objectives: Alzheimer's disease (AD) is the most common pathogenesis of dementia, and mild cognitive impairment (MCI) is considered as the intermediate stage from normal elderly to AD. Early detection of MCI is an essential step for the timely intervention of AD to slow the progression of this disease. Different form previous studies in the whole-brain spontaneous activities, this research aimed to explore the low-frequency amplitude spectrum activities of patients with MCI within the default mode network (DMN), which has been involved in the process of maintaining normal cognitive function.

View Article and Find Full Text PDF

Abnormally slow dynamics in occipital cortex of depression.

J Affect Disord

January 2025

University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Canada. Electronic address:

Aim: Major depressive disorder (MDD) is characterized by altered activity in various higher-order regions like the anterior cingulate and prefrontal cortex. While some findings also show changes in lower-order sensory regions like the occipital cortex in MDD, the latter's exact neural and temporal, e.g.

View Article and Find Full Text PDF

Multi-channel spatio-temporal graph attention contrastive network for brain disease diagnosis.

Neuroimage

January 2025

College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China. Electronic address:

Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis.

View Article and Find Full Text PDF

Abnormal tau phosphorylation is a key mechanism in neurodegenerative diseases. Evidence implicates infectious agents, such as Herpes Simplex Virus 1 (HSV-1), as co-factors in the onset or the progression of neurodegenerative diseases, including Alzheimer's disease. This has led to divergence in the field regarding the contribution of viruses in the etiology of neurodegenerative diseases.

View Article and Find Full Text PDF

Coordination and persistence of aggressive visual communication in Siamese fighting fish.

Cell Rep

January 2025

Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA. Electronic address:

Outside acoustic communication, little is known about how animals coordinate social turn taking and how the brain drives engagement in these social interactions. Using Siamese fighting fish (Betta splendens), we discover dynamic visual features of an opponent and behavioral sequences that drive visually driven turn-taking aggressive behavior. Lesions of the telencephalon show that it is unnecessary for coordinating turn taking but is required for persistent participation in aggressive interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!