This paper describes a computer system which accurately defines the EMG patterns of the lower extremities during gait. Footswitches are used to identify the temporal relationships and determine the phases of the gait cycle. Fine wire electrodes, inserted in the desired muscles of the patient being tested, provide EMG signals for comparison with a normal database. The system is also usable with surface electrodes when an appropriate normal database for surface electrodes is incorporated. Descriptive qualifiers (such as 'premature onset', 'delayed cessation', 'no clinically significant EMG', 'continuous activity' etc.) are used to produce a clinically relevant printed (textual) report. The intensity filtered average (IFA) of the EMG is shown graphically with the representative profile of each stride. The IFAs for all muscles tested can be plotted together (up to six on a page) and the graphic representation of the 'raw' EMG can be produced. The methods of generating the normal database by creating time-adjusted mean profiles (TAMP) are enumerated. The clinical use of the system is discussed. A detailed analysis of 31 of the most recent patient tests for which the system was used provides an indication of its accuracy. For 86% of the 428 muscle tests examined, the EMG analyser was considered to have given the correct result as compared with a visual analysis of the raw EMG record by a trained expert. Recommendations for the use and future improvements of the EMG analyser are made.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0141-5425(93)90064-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!