Meiotic recombination in yeast.

Curr Opin Genet Dev

Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637.

Published: October 1993

Over the past several years, the yeast Saccharomyces cerevisiae has proven to be an extremely useful model system for understanding how cells acquire high recombinational ability during meiosis. Due to recent advances in the physical monitoring of DNA intermediates during meiosis, new cytological methods for visualization of chromosomes during pairing and exchange, and progress in the identification and analysis of recombination-defective mutants, a general picture of the order and dependencies of specific recombination events is now emerging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0959-437x(05)80092-9DOI Listing

Publication Analysis

Top Keywords

meiotic recombination
4
recombination yeast
4
yeast years
4
years yeast
4
yeast saccharomyces
4
saccharomyces cerevisiae
4
cerevisiae proven
4
proven extremely
4
extremely model
4
model system
4

Similar Publications

Non-crossover gene conversion is a type of meiotic recombination characterized by the non-reciprocal transfer of genetic material between homologous chromosomes. Gene conversions are thought to occur within relatively short tracts of DNA, estimated to be in the order of 100-1,000 bp in humans. However, the number of observable gene conversion tracts per study has so far been limited by the use of pedigree or sperm-typing data to detect gene conversion events.

View Article and Find Full Text PDF

Meiotic recombination is a powerful source of haplotypic diversity, and thus plays an important role in the dynamics of short-term adaptation. However, high-throughput quantitative measurement of recombination parameters is challenging because of the large size of offspring to be genotyped. One of the most efficient approaches for large-scale recombination measurement is to study the segregation of fluorescent markers in gametes.

View Article and Find Full Text PDF

Human recombination maps are a valuable resource for association and linkage studies and crucial for many inferences of population history and natural selection. Existing maps are based solely on cross-over (CO) recombination, omitting non-cross-overs (NCOs)-the more common form of recombination-owing to the difficulty in detecting them. Using whole-genome sequence data in families, we estimate the number of NCOs transmitted from parent to offspring and derive complete, sex-specific recombination maps including both NCOs and COs.

View Article and Find Full Text PDF

Accurate gametogenesis requires the establishment of the telomere bouquet, an evolutionarily conserved, 3D chromosomal arrangement. In this spatial configuration, telomeres temporarily aggregate at the nuclear envelope during meiotic prophase, which facilitates chromosome pairing and recombination. The mechanisms governing the assembly of the telomere bouquet remain largely unexplored, primarily due to the challenges in visualizing and manipulating the bouquet.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!