Limited solubility restricts amounts of tyrosine (Tyr) in amino acid solutions used in total parenteral nutrition (TPN). Excess phenylalanine (Phe) is included in TPN for conversion to Tyr by liver Phe hydroxylase. However, this conversion is limited, especially in infants. We have confirmed that infants receiving TPN have low Tyr concentrations and high Phe/Tyr ratios in plasma compared with published values for enterally fed neonates. Tyr is important in the synthesis of proteins and other biomolecules, including catecholamines in the brain. We tested the soluble peptide gamma-glutamyl-tyrosine (Glu(Tyr)) as a possible precursor of Tyr in TPN. Groups of five rats were given infusions of TPN containing an amino acid mixture simulating a commercial formulation (group A), TPN in which Glu(Tyr) was substituted for half the Phe in the group A solution) (group B), or saline (group C). Control animals (group C) were fed rodent chow. Blood was sampled at 0 time and daily for 4 days. Brains were collected at 96 hours, and aromatic amino acids in plasma and brains were measured by high-performance liquid chromatography. Throughout the experiment, plasma of animals in group A had significantly elevated Phe and reduced Tyr concentrations compared with control values; plasma concentrations in groups B and C were similar. In groups A and B, brain Tyr levels were 31% and 63% of control values, respectively. In group B, Glu(Tyr) was not detected in brains. These data suggest that supplementing current TPN mixtures with Glu(Tyr), which is stable in solution, can produce normal plasma Tyr concentrations and Phe/Tyr ratios and improve the supply of Tyr to the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0148607193017004337DOI Listing

Publication Analysis

Top Keywords

tyr concentrations
12
tyr
9
soluble peptide
8
total parenteral
8
parenteral nutrition
8
amino acid
8
phe/tyr ratios
8
animals group
8
control values
8
tpn
7

Similar Publications

This study aimed to investigate the protective effect of a novel capsaicinoid glucoside (CG) against HO-induced oxidative stress in HepG2 cells and elucidate its underlying molecular mechanism. CG treatment significantly reduced HO-induced cell mortality and attenuated the production of lactate dehydrogenase and malondialdehyde in a dose-dependent manner. Moreover, CG drastically reduced the ROS levels 18.

View Article and Find Full Text PDF

Bee pollen peptides as potent tyrosinase inhibitors with anti-melanogenesis effects in murine b16f10 melanoma cells and zebrafish embryos.

Sci Rep

December 2024

Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.

One important functional food ingredient today, valued for its health properties and ability to prevent disease, is bee pollen, which comprises a combination of nectar, pollen from plants, and the secretions of bees. In this research, the tyrosinase (TYR) inhibiting abilities of the peptides derived from bee pollen protein hydrolysates are investigated. Various proteases were utilized to generate these peptides, followed by testing at different concentrations.

View Article and Find Full Text PDF

In this study, we investigated the changes in untargeted metabolites using UHPLC-MS/MS and the flavors of nonflavored (BS1) and flavored (BS2) roasted beef using GC-MS throughout a 6-month frozen period. A total of 509, 659, and 496 metabolites met the conditions for differential screening, and 56, 103, and 47 differential metabolites were recognized between BS1 and BS2 at 0, 3, and 6 months of frozen periods, respectively. The total relative abundance of organic nitrogen compounds, phenylpropanoids, polyketides, organic acids and their derivatives, and benzenoids increased during frozen storage at 3 months and then decreased at 6 months.

View Article and Find Full Text PDF

An integrated wearable microfluidic biosensor for simultaneous detection of multiple biomarkers in sweat.

Talanta

December 2024

Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, 644000, PR China. Electronic address:

Simultaneous detection of biomarkers in sweat is crucial for comprehensive health assessment and personalized monitoring. However, the low sweat secretion rate and low metabolite concentrations present challenges for developing non-invasive wearable sensors. This study aims to develop a flexible wearable biosensor for simultaneous detection of low-concentration biomarkers in sweat, enabling comprehensive health assessment.

View Article and Find Full Text PDF

Stratification of apple seeds in the context of ROS metabolism.

J Plant Physiol

December 2024

Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.

Article Synopsis
  • Apple seeds have deep dormancy, but cold stratification for 40 days can induce uniform germination by altering reactive oxygen species (ROS) levels.
  • During initial stratification, polyamine oxidase boosts ROS production, with catalase activity increasing after 14 days to maintain optimal ROS levels.
  • Extended stratification leads to higher ROS levels, prompting increased phenolic compounds and peroxidase activity, while fluctuations in toxic m-tyrosine levels suggest protective mechanisms in the seed tissue.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!