A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic life table model for Aedes aegypti (diptera: Culicidae): simulation results and validation. | LitMetric

Dynamic life table model for Aedes aegypti (diptera: Culicidae): simulation results and validation.

J Med Entomol

Medical and Veterinary Entomology Research Laboratory, USDA-ARS, Gainesville, FL 32604.

Published: November 1993

The container-inhabiting mosquito simulation model (CIMSiM) is a weather-driven, dynamic life table simulation model of Aedes aegypti (L.) and similar nondiapausing Aedes mosquitoes that inhabit artificial and natural containers. This paper presents a validation of CIMSiM simulating Ae. aegypti using several independent series of data that were not used in model development. Validation data sets include laboratory work designed to elucidate the role of diet on fecundity and rates of larval development and survival. Comparisons are made with four field studies conducted in Bangkok, Thailand, on seasonal changes in population dynamics and with a field study in New Orleans, LA, on larval habitat. Finally, predicted ovipositional activity of Ae. aegypti in seven cities in the southeastern United States for the period 1981-1985 is compared with a data set developed by the U.S. Public Health Service. On the basis of these comparisons, we believe that, for stated design goals, CIMSiM adequately simulates the population dynamics of Ae. aegypti in response to specific information on weather and immature habitat. We anticipate that it will be useful in simulation studies concerning the development and optimization of control strategies and that, with further field validation, can provide entomological inputs for a dengue virus transmission model.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmedent/30.6.1018DOI Listing

Publication Analysis

Top Keywords

dynamic life
8
life table
8
model aedes
8
aedes aegypti
8
simulation model
8
population dynamics
8
model
5
aegypti
5
table model
4
aegypti diptera
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!