The initial events in glucose metabolism by all cells are the transport and phosphorylation of glucose. To quantify the relative contributions of these two processes to overall glucose utilization, we have developed an experimental approach for their in situ measurement as parallel processes. The method is based on the use of intracellular [2-3H]glucose as a substrate for both the transporter and hexokinase, and involves simultaneous measurement of [2-3H]glucose efflux and of 3H2O released by phosphorylation. The Xenopus oocyte expression system was used to test the method, since in these cells transport and phosphorylation activities can be regulated by expression of mRNA or injection of foreign protein. Oocytes microinjected with [2-3H]glucose showed no release of injected glucose, but did have saturable phosphorylation kinetics, with a Km of 40 microM and a Vmax of 0.1 nmol/min/oocyte. Co-injection of yeast hexokinase increased glucose phosphorylation by five-fold. Expression of human glucose transporter (GLUT1) mRNA resulted in a 25-30-fold increase in the rate of saturable efflux of microinjected glucose compared to control oocytes. The kinetics of transport and phosphorylation of [2-3H]glucose were analyzed by a multiple curve-fitting program that provided estimates of kinetic coefficients for both processes from a single time course. The analysis showed that expression of GLUT1 shifted the rate-limiting step in glucose utilization from transport to phosphorylation. A similar shift occurred at a three-fold lower extracellular concentration of 2-deoxyglucose. In a pancreatic beta cell line both transport and phosphorylation showed high Km values, with phosphorylation as the limiting step. The in situ measurement of glucose transport and phosphorylation as parallel processes should be useful in defining the relative contributions of each step to overall glucose metabolism in other cell and tissue models.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.1041570310DOI Listing

Publication Analysis

Top Keywords

transport phosphorylation
28
phosphorylation
11
glucose
10
glucose transport
8
phosphorylation xenopus
8
rate-limiting step
8
glucose metabolism
8
cells transport
8
relative contributions
8
glucose utilization
8

Similar Publications

GDF15-mediated enhancement of the Warburg effect sustains multiple myeloma growth via TGFβ signaling pathway.

Cancer Metab

January 2025

Department of Cardiovascular medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China.

The Warburg effect, characterized by the shift toward aerobic glycolysis, is closely associated with the onset and advancement of tumors, including multiple myeloma (MM). Nevertheless, the specific regulatory mechanisms of glycolysis in MM and its functional role remain unclear. In this study, we identified that growth differentiation factor 15 (GDF15) is a glycolytic regulator, and GDF15 is highly expressed in MM cells and patient samples.

View Article and Find Full Text PDF

Polystyrene microplastics attenuated the impact of perfluorobutanoic acid on Chlorella sorokiniana: Hetero-aggregation, bioavailability, physiology, and transcriptomics.

J Hazard Mater

January 2025

Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.

Microplastics (MPs) and perfluorobutanoic acid (PFBA), emerging contaminants, are ubiquitous in the environment and toxic to organisms. The interaction of MPs with other contaminants can affect their toxicity. However, the impact of MPs on PFBA toxicity remains unknown.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!