Expression of viral genes in transgenic plants is a very effective tool for attenuating plant viral infection. Nevertheless, the lack of generality and risk issues related to the expression of viral genes in plants might limit the exploitation of this strategy. Expression in plants of antibodies against essential viral proteins could provide an alternative approach to engineer viral resistance. Recently, expression of complete or engineered antibodies has been successfully achieved in plants. The engineered single-chain Fv antibody scFv (refs 10, 11) is particularly suitable for expression in plants because of its small size and the lack of assembly requirements. Here we present evidence that constitutive expression in transgenic plants of a scFv antibody, directed against the plant icosahedral tombusvirus artichoke mottled crinkle virus, causes reduction of infection incidence and delay in symptom development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/366469a0 | DOI Listing |
Plant Cell Rep
January 2025
Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China.
A high-throughput sequencing identified 1283 lncRNAs in anthers at different stages in Arabidopsis and their relationship with protein-coding genes and miRNAs during anther and pollen development were analyzed. Long non-coding RNAs (lncRNAs) are important regulatory molecules involved in various biological processes. However, their roles in male reproductive development and interactions with miRNAs remained elusive.
View Article and Find Full Text PDFHortic Res
January 2025
National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
GRAS, termed after gibberellic acid insensitive (GAI), RGA (repressor of GA1), and SCR (scarecrow), is a plant-specific transcription factor crucial for plant development and stress response. However, understanding of the functions played by the GRAS members and their target genes in citrus is limited. In this study, we identified a cold stress-responsive GRAS gene from , designated as PtrPAT1, by yeast one-hybrid library screening using the promoter of , a betaine aldehyde dehydrogenase (BADH)-like gene.
View Article and Find Full Text PDFHortic Res
January 2025
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China.
Glycerophosphodiester phosphodiesterase 1 (GDPD1) plays an important function in the abiotic stress responses and participates in the accumulation of sn-glycerol-3-phosphate (G3P) in plants, which is key to plant systemic acquired resistance (SAR). However, the role of GDPD1 in plant responses to biotic stress remains poorly understood. This study characterized the antivirus function of the gene (designated as ) from Eureka lemon.
View Article and Find Full Text PDFFront Plant Sci
January 2025
School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China.
Adventitious root (AR) formation is a bottleneck for vegetative proliferation. In this study, 13 AHP genes (MdAHPs) were identified in the apple genome. Phylogenetic analysis grouped them into 3 clusters (I, II, III), with 4, 4, and 5 genes respectively.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA.
Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!