Using the phasmid vector pSL5, the genomic DNA fragment of T. aquaticus YT1 which contained the thermostable DNA polymerase (Taq-polymerase) gene was cloned. The BglII fragment of this genome locus was subcloned in the BamHI site of the pUC19 plasmid. To optimize the Taq-polymerase gene expression in E. coli cells, the gene was cloned in the correct reading frame regarding the initiation ATG codon of the pPR-TGATG-1 expression vector. The gene expression in this vector was controlled by the phage lambda PR promoter and the temperature-sensitive phage lambda repressor. We used PCR to amplify the short 5'-end fragment of the Taq-polymerase gene coding for the part into which an artificial SacI site was introduced. This site has been used for cloning the PCR product into the pPR-TGATG-1 vector, and the missing gene part was cloned into the KpnI site of the PCR product from the natural cloned gene. The cells of the E. coli PVG-A1 strain, which was obtained in the end, expressed efficiently the Taq-polymerase gene at the nonpermissive temperature. The content of the recombinant Taq-polymerase in the cells was about 1-2% of total proteins. The purified nearly homogeneous Taq-polymerase amplified efficiently in the PCR DNA fragments up to 5.5 kb long and was useful in DNA sequencing the by Sanger method. The half-life of the purified Taq polymerase was about 60 min at 95 degrees C, it was active for at least 65 standard PCR circles. The specific activity of recombinant enzyme preparations was about 180-200,000 units per mg of protein. The E. coli PVG-A1 strain enables one to isolate up to 500,000 units of purified enzyme from 2 l of bacterial culture.

Download full-text PDF

Source

Publication Analysis

Top Keywords

taq-polymerase gene
16
gene cloned
12
aquaticus yt1
8
dna polymerase
8
gene
8
gene expression
8
expression vector
8
phage lambda
8
pcr product
8
coli pvg-a1
8

Similar Publications

Variation of gene ratios in mock communities constructed with purified 16S rRNA during processing.

Sci Rep

December 2024

Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto, Travessa 3, n. 380., São Paulo, SP, CEP 05508-900, Brazil.

16S ribosomal nucleic acid (16S rRNA) analysis allows to specifically target the metabolically active members of microbial communities. The stability of the ratios between target genes in the workflow, which is essential for the bioprocess-relevance of the data derived from this analysis, was investigated using synthetic mock communities constructed by mixing purified 16S rRNA from Bacillus subtilis (Bs), Staphylococcus aureus (Sa), Pseudomonas aeruginosa (Pa), Klebsiella pneumoniae (Kp) and Burkholderia cepacia (Bc) in different proportions. The RT reaction yielded one copy of cDNA per rRNA molecule for Pa, Bc and Sa but only 2/3 of the expected cDNA from 16S rRNAs of Bs and Kp.

View Article and Find Full Text PDF

Introduction: Modification of natural enzymes to introduce new properties and enhance existing ones is a central challenge in bioengineering. This study is focused on the development of Taq polymerase mutants that show enhanced reverse transcriptase (RTase) activity while retaining other desirable properties such as fidelity, 5'- 3' exonuclease activity, effective deoxyuracyl incorporation, and tolerance to locked nucleic acid (LNA)-containing substrates. Our objective was to use AI-driven rational design combined with multiparametric wet-lab analysis to identify and validate Taq polymerase mutants with an optimal combination of these properties.

View Article and Find Full Text PDF

Development of a qPCR assay for the quantification of canine autosomal DNA recovered from livestock attacks.

Sci Justice

November 2024

Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.

The absence of a standardised method to quantify canine DNA recovered from livestock attacks leaves forensic providers without an important quality control step to help support their decision making. Typically used to normalise the amount of DNA for STR amplification, modern forensic DNA quantification approaches use qPCR of target genes and can also include an Internal Positive Controls (IPC) to determine the presence of PCR inhibitors. The co-amplification of livestock DNA alongside canine DNA has meant that previously developed qPCR methods are not suitable for use so a standardised approach is needed.

View Article and Find Full Text PDF
Article Synopsis
  • Normal and malignant B cells have unique immunoglobulin (Ig) genes that can act as markers due to their high diversity.
  • A laser-based microdissection method is used to isolate single B cells from frozen tissue sections and amplify specific rearranged Ig genes through semi-nested PCR.
  • Analyzing these genes allows researchers to determine the clonal relationships of B cells, their gene usage, and their differentiation stage based on mutation patterns.
View Article and Find Full Text PDF

First report of lily mottle virus naturally infecting lily () in Texas, USA.

Plant Dis

October 2024

Texas A&M University, Department of Plant Pathology & Microbiology, 2401 E. Bus. Hwy. 83, Weslaco, Texas, United States, 78596.

Article Synopsis
  • Lily plants, known for their colorful flowers and strong scent, displayed yellow mottling and mosaic symptoms in March 2024 during an outbreak in Hidalgo County, Texas.
  • Despite initial negative tests for potyvirus using commercial diagnostics, further investigations revealed a mechanically transmissible agent was present, as symptoms emerged on test plants inoculated with samples from affected lilies.
  • DNA analysis confirmed the presence of lily mottle virus (LMoV), identified through PCR amplification and sequencing, showing a significant identity match with known sequences of potyvirus.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!