Cardiac sarcoplasmic reticulum (SR) plays an important role in regulation of the intracellular Ca2+ concentration. It is well known that intracellular Ca2+ overload is one cause of reperfusion injury. Thus, it is predicted that reperfusion injury of myocardium can be prevented by eliminating the Ca2+ overload. This study examined the effects of caffeine, a SR blocker, on reperfusion injury in isolated perfused rat hearts. Working hearts were reperfused for 25 min after 30 or 50 min of ischemia. Caffeine (10(-4) M) was administered during the period of ischemia or the initial 5 min of reperfusion. The left ventricular pressure and the electrocardiogram were recorded. Rate-pressure products were calculated as an index of cardiac function. Adenine nucleotides were measured by high-performance liquid chromatography to assess energy charge. The administration of caffeine for a short period during the initial reperfusion significantly improved cardiac function in the hearts. Caffeine pretreatment during 50 min of ischemia, though, resulted in deterioration of both energy charge and cardiac function. Caffeine did not affect the incidence of either ventricular fibrillation or reversion to sinus rhythm. The energy charges were lower in the preparations with sustained ventricular fibrillation.

Download full-text PDF

Source
http://dx.doi.org/10.1536/ihj.34.429DOI Listing

Publication Analysis

Top Keywords

reperfusion injury
12
cardiac function
12
effects caffeine
8
injury isolated
8
rat hearts
8
intracellular ca2+
8
ca2+ overload
8
min ischemia
8
energy charge
8
ventricular fibrillation
8

Similar Publications

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

High expression of SERPINE1 and CTSL in keratinocytes in pressure injury caused by ischemia-reperfusion injury.

Tissue Cell

January 2025

Institute of Regenerative Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, PR China. Electronic address:

Introduction: Pressure Injury (PI) is a complex disease process which is influenced by multiple factors, among which ischemia-reperfusion (I/R) injury is closely related to the progression of PI. But its biomarkers are still unclearly. Understanding its physiological mechanisms and related molecular biomarkers is a key to developing effective prevention and therapeutic strategies.

View Article and Find Full Text PDF

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!