The 10 class I tRNA synthetases have an N-terminal nucleotide-binding fold which contains the catalytic center. Insertions into the nucleotide-binding fold provide contacts for acceptor-helix interactions, which stabilize the amino acid acceptor end of the tRNA substrate in the active site. A separate and largely nonconserved C-terminal domain provides contacts with distal parts of the tRNA, including the anticodon. For Escherichia coli methionyl tRNA synthetase, whose structure is known, the C-terminal domain is predominantly alpha-helical and forms a loop which interacts with the anticodon trinucleotide located about 76 A from the amino acid attachment site. Fused to the end of this helical domain is a peptide which curls back into the N-terminal nucleotide-binding fold and region of the active site. We show here that mutations in this peptide appendix disrupt aminoacylation and binding of a 7 base pair microhelix substrate based on the acceptor stem of tRNA(fMet), without affecting interactions with ATP or methionine or with the tRNA(fMet) anticodon. The impairment of acceptor-helix interactions by mutation of the C-terminal peptide can offset favorable anticodon interactions and severely reduce aminoacylation of tRNA(fMet). Thus, in addition to, or as an alternative to, acceptor-helix-binding insertions into the N-terminal nucleotide-binding fold, C-terminal peptide epitopes in some class I enzymes may provide a mechanism for facilitating RNA microhelix interactions with the catalytic site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00211a011 | DOI Listing |
Int J Mol Sci
January 2025
Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania.
We test here the prediction capabilities of the new generation of deep learning predictors in the more challenging situation of multistate multidomain proteins by using as a case study a coiled-coil family of Nucleotide-binding Oligomerization Domain-like (NOD-like) receptors from and a few extra examples for reference. Results reveal a truly remarkable ability of these platforms to correctly predict the 3D structure of modules that fold in well-established topologies. A lower performance is noticed in modeling morphing regions of these proteins, such as the coiled coils.
View Article and Find Full Text PDFNephrol Dial Transplant
January 2025
Paediatric Nephrology, UZ Leuven and Department of Cellular and Molecular Physiology, KUL, Leuven, Belgium.
Background And Hypothesis: ATP6V1B1 encodes a subunit of the vacuolar H+-ATPase and pathogenic variants are associated with autosomal recessive distal renal tubular acidosis (dRTA) with deafness. Heterozygous variants predicted to affect a specific amino acid, Arg394, have been recurrently reported in dRTA but their significance has been unclear. We hypothesised that these variants are associated with a dominant disease mechanism.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia 46010, Spain; Centro de Investigación Príncipe Felipe, Unidad Asociada a IBV, Valencia 46012, Spain. Electronic address:
The small molecule IGGi-11 targets Gαi subunits of heterotrimeric guanine nucleotide-binding proteins. Gα subunits are activated by G-protein-coupled receptors in response to extracellular stimuli by accelerating the exchange of GDP for GTP, but they are also activated by intracellular proteins like GIV, of which elevated levels correlate with increased cell migration and cancer metastasis. IGGi-11 disrupts the interaction of Gαi proteins with GIV and inhibits pro-invasive traits of metastatic breast cancer cells without interfering with GPCR signaling.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14850, USA.
Rab GTPases act as molecular switches to regulate organelle homeostasis and membrane trafficking. Rab6 plays a central role in regulating cargo flux through the Golgi and is activated via nucleotide exchange by the Ric1-Rgp1 protein complex. Ric1-Rgp1 is conserved throughout eukaryotes but the structural and mechanistic basis for its function has not been established.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
In shrimp aquaculture, white spot syndrome virus (WSSV) infections severely impact production. Previous research highlighted the crucial role of the Penaeus monodon Rab7 (PmRab7) protein in WSSV entry, specifically its interaction with the viral envelope protein VP28. PmRab7 exists in two conformations: GDP-bound (inactive) and GTP-bound (active).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!