We describe a homogeneous competitive model immunoassay for determination of thyroxine by multifrequency phase-modulation fluorescence. Using a nonradiative energy transfer transduction mechanism, B-phycoerythrin conjugated to thyroxine is the energy donor and a carboxymethylindocyanine dye conjugated to anti-thyroxine antibody is the energy acceptor. Energy transfer from B-phycoerythrin to the acceptor results in a decreased lifetime and/or phase angle. The fluorescence lifetime change reflects the extent of energy transfer. In the competitive immunoassay format, the donor-thyroxine conjugate and an analytical sample of thyroxine compete for acceptor-antibody binding sites, resulting in a phase angle change which is dependent on the amount of thyroxine in the sample. Dose-response curves of phase angle versus thyroxine concentration are comparable to steady-state intensity curves. Since phase-modulation lifetime measurements are largely independent of total signal intensity, sources of optical interference are minimized. The potential for whole blood measurements exists since the energy transfer lifetime method can be extended to longer wavelengths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abio.1993.1419 | DOI Listing |
Brain
January 2025
Institute of Neurological Sciences and Psychiatry, Hacettepe University, 06100, Ankara, Turkey.
Cortical spreading depolarization (CSD), the neurophysiological event believed to underlie aura, may trigger migraine headaches through inflammatory signaling that originates in neurons and spreads to the meninges via astrocytes. Increasing evidence from studies on rodents and migraine patients supports this hypothesis. The transition from pro-inflammatory to anti-inflammatory mechanisms is crucial for resolving inflammation.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemistry, Northwestern University, Evanston, IL 60201, USA.
Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a light emission or "chromaticity" palette.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Research Institute of the, McGill University Health Centre, Montreal, QC, Canada.
The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants.
View Article and Find Full Text PDFChemSusChem
December 2024
Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
Catalyst design plays a critical role in ensuring sustainable and effective energy conversion. Electrocatalytic materials need to be able to control active sites and introduce defects in both acidic and alkaline electrolytes. Furthermore, producing efficient catalysts with a distinct surface structure advances our comprehension of the mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!