Nutrition and human physiological adaptations to space flight.

Am J Clin Nutr

Biomedical Operations and Research Branch, NASA-Johnson Space Center, Houston, TX 77058.

Published: November 1993

Space flight provides a model for the study of healthy individuals undergoing unique stresses. This review focuses on how physiological adaptations to weightlessness may affect nutrient and food requirements in space. These adaptations include reductions in body water and plasma volume, which affect the renal and cardiovascular systems and thereby fluid and electrolyte requirements. Changes in muscle mass and function may affect requirements for energy, protein and amino acids. Changes in bone mass lead to increased urinary calcium concentrations, which may increase the risk of forming renal stones. Space motion sickness may influence putative changes in gastro-intestinal-hepatic function; neurosensory alterations may affect smell and taste. Some or all of these effects may be ameliorated through the use of specially designed dietary countermeasures.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/58.5.583DOI Listing

Publication Analysis

Top Keywords

physiological adaptations
8
space flight
8
nutrition human
4
human physiological
4
space
4
adaptations space
4
flight space
4
flight model
4
model study
4
study healthy
4

Similar Publications

Salinity tolerance in brewing sorghum is a very important trait, especially in areas that are affected by soil salinity. In order to elucidate the mechanism underlying salt tolerance, we conducted a comparative analysis of the transcriptome and metabolome in two distinct sweet sorghum genotypes, namely the salt-tolerant line NY1298 and the salt-sensitive line MY1176, following exposure to salt treatment. Our initial findings indicate the presence of genotype-specific responses in brewing sorghum under salt stress conditions.

View Article and Find Full Text PDF

This research focuses on Generation Z (Gen Z) students, specifically those in nursing colleges. Gen Z individuals display unique characteristics in terms of thinking, personality, lifestyle, and learning preferences compared to preceding generations, necessitating adaptations in teaching methodologies within nursing schools. This study explores the effectiveness of the Jigsaw Technique (JST) in engaging first-year undergraduate nursing students in learning process.

View Article and Find Full Text PDF

Appetite-Control and Eating-Behavior Traits Might Not Be Impacted by a Single Weight-Cycling Episode in Weight-Cycling Athletes: Results of the Wave Study.

Int J Sports Physiol Perform

January 2025

Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P) UPR 3533, CRNH Auvergne, Clermont Auvergne University, Clermont-Ferrand, France.

Purpose: The impact of weight cycling (WC)-successive weight loss (WL) and weight regain (WG)-on athlete performance is well documented, but effects on appetite are not. This study assessed the impact of a WC episode on dietary and appetitive profiles in athletes, considering sex and sport type.

Methods: Athletes (28 male, 20 female) from combat (n = 23), strength (n = 12), and endurance (n = 13) sports participated in 3 conditions during a WC episode (baseline, WL, WG).

View Article and Find Full Text PDF

Experimental observations and field data demonstrated that predators adapt their hunting strategies in response to prey abundance. While previous studies explored the impact of predation risk on predator-prey interactions, the impact of symbiotic relationships between fear-affected prey and non-prey species on system dynamics remains unexplored. This study uses a mathematical approach to investigate how different symbiotic relationships govern system dynamics when predators adapt to prey availability.

View Article and Find Full Text PDF

Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!