This paper reviews our experience with the vesical cancer which develops on the diverticulum, a situation occurring in 1.5% of all vesical tumours in our setting. The condition's clinical features (diagnostic and therapeutic), usually detected in advanced stages, are emphasized. From a morphological point of view, histology of over half these tumours differs from the pure transitional one. There were two cases of pure transitional carcinoma, one small cells cancer, one squamous cells cancer and one with adenocarcinoma differentiating foci. Several sets of data, which include histological variability as well as presence of congenital diverticulum and urethral tumours, have led us to suspect the existence of morpho-genetical factors in the development of these neoplasias. However, the widely accepted carcinogenetic theory continues to be the most likely.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pure transitional
8
cells cancer
8
[primary bladder
4
bladder carcinoma
4
carcinoma diverticulum
4
diverticulum clinico-pathologic
4
clinico-pathologic study
4
study cases]
4
cases] paper
4
paper reviews
4

Similar Publications

In various applications, the pore structure of a porous medium must be controlled to facilitate heat and mass transfer, which considerably influence the system performance. Freeze-casting is a versatile technique for creating aligned pores; However, because of the complexity of the associated equipment and the energy inefficiency of liquid-nitrogen-based cooling in a room-temperature environment, limits scalability for industrial applications. This study is aimed at establishing a novel freeze-casting strategy with a simple mold design combining heat-conductive and insulating materials for long-range pore alignment via directional ice growth under deep-freezing conditions, rendering it feasible for large-scale production.

View Article and Find Full Text PDF

The transition to net zero emissions requires the capture of carbon dioxide from industrial point sources, and direct air capture (DAC) from the atmosphere for geological storage. Dissolved CO has reactivity to rock core, and while the majority of previous studies have concentrated on reservoir rock or cap-rock reactivity, the underlying seal formation may also react with CO. Drill core from the underlying seal of a target CO storage site was reacted at in situ conditions with pure CO, and compared with an impure CO stream with SO, NO and O that could be expected from hard to abate industries.

View Article and Find Full Text PDF

Stable Air Plastron Prolongs Biofluid Repellency of Submerged Superhydrophobic Surfaces.

Langmuir

January 2025

School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Tietotie 3 Espoo 02150, Finland.

Superhydrophobic surfaces find applications in numerous biomedical scenarios, requiring the repellence of biofluids and biomolecules. Plastron, the trapped air between a superhydrophobic surface and a wetting liquid, plays a pivotal role in biofluid repellency. A key challenge, however, is the often short-lived plastron stability in biofluids and the lack of knowledge surrounding it.

View Article and Find Full Text PDF

Density functional theory study of hydrogen and oxygen reactions on NiO(100) and Ce doped NiO(100).

J Mol Model

January 2025

State Key Laboratory of Polyolefins and Catalysis, Shanghai, 200062, People's Republic of China.

Context: This study aims to reveal the reaction mechanisms of H and O on the NiO(100) and Ce-doped NiO(100) surfaces using the density functional theory (DFT) combined with the on-site Coulomb correction (DFT + U) method. It was found that H and O react favorably on the reduced surfaces of both materials. However, after the oxygen vacancy is filled, the activation energy for the reaction between H₂ and lattice oxygen increases.

View Article and Find Full Text PDF

The evolution of display technologies is rapidly transitioning from traditional screens to advanced augmented reality (AR)/virtual reality (VR) and wearable devices, where quantum dots (QDs) serve as crucial pure-color emitters. While solution processing efficiently forms QD solids, challenges emerge in subsequent stages, such as layer deposition, etching, and solvent immersion. These issues become especially pronounced when developing diverse form factors, necessitating innovative patterning methods that are both reversible and sustainable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!