ICP0 is a potent activator of herpes simplex virus type 1 gene expression in transient assays and in productive infection. A role for ICP0 in reactivation from latency in vivo has also been suggested on the basis of the observation that viruses with mutations in both copies of the diploid gene for ICP0 reactivate less efficiently than wild-type virus. Because the ICP0 gene is contained entirely within the coding sequences for the latency-associated transcripts (LATs), ICP0 mutants also contain mutations in LAT coding sequences. This overlap raises the question of whether mutations in ICP0 or the LATs, which have also been implicated in reactivation, are responsible for the reduced reactivation frequencies characteristic of ICP0 mutants. Two approaches were taken to examine more definitively the role of ICP0 in the establishment and reactivation of latency. First, a series of ICP0 nonsense, insertion, and deletion mutant viruses that exhibit graded levels of ICP0-specific transactivating activity were tested for parameters of the establishment and reactivation of latency in a mouse ocular model. Although these mutants are ICP0 LAT double mutants, all nonsense mutants induced the synthesis of near-wild-type levels of the 2-kb LAT, demonstrating that the nonsense linker did not disrupt the synthesis of this LAT species. All mutants replicated less efficiently than the wild-type virus in mouse eyes and ganglia during the acute phase of infection. The replication efficiencies of the mutants at these sites corresponded well with the ICP0 transactivating activities of individual mutant peptides in transient expression assays. All mutants exhibited reduced reactivation frequencies relative to those of wild-type virus, and reactivation frequencies, like replication efficiencies in eyes and ganglia, correlated well with the level of ICP0 transactivating activity exhibited by individual mutant peptides. The amount of DNA of the different mutants varied in latently infected ganglia, as demonstrated by polymerase chain reaction analysis. No correlation was evident between reactivation frequencies and the levels of viral DNA in latently infected ganglia. Thus, replication and reactivation efficiencies of ICP0 mutant viruses correlated well with the transactivating efficiency of the corresponding mutant peptides. In a second approach to examining the role of ICP0 in latency, a single copy of the wild-type gene for ICP0 was inserted into the genome of an ICP0- LAT- double mutant, 7134, which exhibits a marked impairment in its ability to replicate in the mouse eye and reactivate from latency.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC238216PMC
http://dx.doi.org/10.1128/JVI.67.12.7501-7512.1993DOI Listing

Publication Analysis

Top Keywords

icp0
16
reactivation latency
16
reactivation frequencies
16
role icp0
12
wild-type virus
12
mutant peptides
12
reactivation
10
mutants
9
herpes simplex
8
simplex virus
8

Similar Publications

Unlabelled: Recent studies report the genetic loss of the lariat debranching enzyme ( ) activity increases susceptibility to viral infection. Here, we show that more than 25% of human introns contain large hairpin structures created by the folding of two elements inserted in opposite orientation. In wildtype cells, this large reservoir of endogenous dsRNA is efficiently degraded.

View Article and Find Full Text PDF

Alphaherpesviruses, including herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV), are neurotropic double-stranded DNA viruses. Alphaherpesviruses control the expression of various host factors to ensure efficient infection and propagation. Recently, HSV-1 was found to upregulate Arc/Arg3.

View Article and Find Full Text PDF

Herpes simples virus 1 (HSV-1) keratitis is a major cause of blindness globally. During primary infection, HSV-1 travels to the trigeminal ganglia and establishes lifelong latency. Although some treatments can reduce symptom severity and recurrence, there is no cure for HSV-1 keratitis.

View Article and Find Full Text PDF

The HUSH epigenetic repressor complex silences PML nuclear body-associated HSV-1 quiescent genomes.

Proc Natl Acad Sci U S A

December 2024

Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d'Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team "Chromatin dynamics, Nuclear Domains, Virus", Lyon 69008, France.

Herpes simplex virus 1 (HSV-1) latently infected neurons display diverse patterns in the distribution of the viral genomes within the nucleus. A key pattern involves quiescent HSV-1 genomes sequestered in promyelocytic leukemia nuclear bodies (PML NBs) forming viral DNA-containing PML-NBs (vDCP NBs). Using a cellular model that replicates vDCP NB formation, we previously demonstrated that these viral genomes are chromatinized with the H3.

View Article and Find Full Text PDF

Glucocorticoid receptor (GR) activation enhances Human alpha-herpes virus 1 (HSV-1) replication and explant-induced reactivation from latency. Furthermore, GR and Krüppel-like factor 15 (KLF15) cooperatively transactivate cis-regulatory modules (CRMs) that drive expression of infected cell protein 0 (ICP0), ICP4, and ICP27. KLF and specificity protein (Sp) family members bind GC-rich or C-rich sequences and belong to the same super-family of transcription factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!