The alpha-amylase from Pyrococcus furiosus, a hyperthermophilic archaebacterium, has been purified to homogeneity. The enzyme is a homodimer with a subunit molecular mass of 66 kDa. The isoelectric point is 4.3. The enzyme displays optimal activity, with substantial thermal stability, at 100 degrees C, with the onset of activity at approximately 40 degrees C. Unlike mesophilic alpha-amylases there is no dependence on Ca2+ for activity or thermostability. The enzyme displays a broad range of substrate specificity, with the capacity to hydrolyze carbohydrates as simple as maltotriose. No subtrate binding occurs below the temperature threshold of activity, and a decrease in Km accompanies an increase in temperature. Except for a decrease in Asp and an increase in Glu, the amino acid composition does not confirm previously defined trends in thermal adaption. Fourth derivative UV spectroscopy and intrinsic fluorescence measurements detected no temperature-dependent structural reorganization. Hydrogen exchange results indicate that the molecule is rigid, with only a slight increase in conformational flexibility at elevated temperature. Scanning microcalorimetry detected no considerable change in the heat capacity function, at the pH of optimal activity, within the temperature range in which activity is induced. The heat absorption peak due to denaturation, under these conditions, occurred within the temperature range of 90-120 degrees C. When the pH was increased, a change in the shape of the heat absorption peak was observed, which when analyzed thermodynamically shows that the process of heat denaturation is complex, and includes at least three stages, indicating that the protein structure consists of three domains. At temperatures below 90 degrees C no excess heat absorption or change in the CD spectra were observed which could be associated with the cooperative conformational transition of the protein. According to the thermodynamic characteristics of the heat denaturation, the cold denaturation of this protein can be expected only at -3 degrees C. Therefore, the observed inactivation of this enzyme is not caused by the cooperative change of its tertiary structure. It can be associated only with the gradual changes of protein domain interaction.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
January 2025
School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 43200, China.
Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
Transitions seen in the electric properties of water-absorbable poly(2,5-benzimidazole) (ABPBI) films were confirmed by electric conductivity, dielectric constant, and time-domain nuclear magnetic resonance (NMR) measurements. The electric resistance of the films was measured at room temperature using a high-resistance meter, and the dielectric constant at room temperature was measured using an LCR meter in the frequency range of 90 Hz to 8 MHz. The water absorption ratio at equilibrium absorption for the films was 37%, which corresponded to a volume fraction of water of 0.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Research Laboratory for Sustainable Development and Health, Department of Applied Physics, Faculty of Sciences and Technics, Cadi Ayyad University, Marrakesh 40000, Morocco.
Considering the growing need for developing ecological materials, this study investigates the acoustic, mechanical, and thermal properties of wood composites reinforced with beech or oak wood fibres. Scanning electron microscopy (SEM) revealed a complex network of interconnected pores within the composite materials, with varying pore sizes contributing to the material's overall properties. Acoustic characterization was conducted using a two-microphone impedance tube.
View Article and Find Full Text PDFMolecules
January 2025
Food Science and Engineering College, Anhui Science and Technology University, Chuzhou 233100, China.
To reduce the adverse effects of bran on whole wheat flour products. In this study, seven reconstituted whole wheat flours were prepared and used to determine the effects of microwave and steam treatment on bran. We aimed to understand the effect of modification treatment on the properties of reconstituted whole wheat flour and dough.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
The integration, miniaturization, and high frequency of microwave vacuum electronics put forward higher requirements for heat-conducting and wave-absorbing integrated materials. However, these materials must balance the dispersion and isolation of wave-absorbing components to optimize absorption while maintaining the continuity of thermal conductivity pathways with low defect rates and minimal interfaces. This presents a significant challenge in achieving both high thermal conductivity and efficient wave absorption simultaneously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!