The major virulence factor of Streptococcus pyogenes, the M protein, is positively regulated at the transcriptional level by mry in the M type 6 strain studied. We show here that in two S. pyogenes strains isolated from cases of toxic-shock-like syndrome, a type M1 strain and a type M3 strain, an mry-like gene is also required for resistance to phagocytosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC281337PMC
http://dx.doi.org/10.1128/iai.61.12.5426-5430.1993DOI Listing

Publication Analysis

Top Keywords

type strain
12
streptococcus pyogenes
8
pyogenes strains
8
toxic-shock-like syndrome
8
mry-like gene
8
virulence streptococcus
4
strains types
4
types associated
4
associated toxic-shock-like
4
syndrome depends
4

Similar Publications

This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

Levan is a fructan-type homopolysaccharide that has gained increasing attention due to its unique properties and promising applications. It is a fructose-based polymer produced through microbial fermentation by diverse microorganisms, including bacteria, yeasts and archaea. The ongoing research on levan mainly focuses on optimizing production processes, elucidating its biological functions, and uncover novel applications.

View Article and Find Full Text PDF

Novel Hsp90α inhibitor inhibits HSV-1 infection by suppressing the Akt/β-catenin pathway.

Int J Antimicrob Agents

January 2025

School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.

View Article and Find Full Text PDF

Human papillomavirus (HPV) underpins approximately 90% of squamous cell carcinomas (SCC) of the anus and perianal region. These tumors usually arise in association with precursor lesions such anal intraepithelial neoplasia/ high-grade squamous intraepithelial lesion (AIN 3/ HSIL), whereas a small subset of HPV-negative cancers may harbor mutations in TP53. Recently, vulvar lesions termed differentiated exophytic vulvar intraepithelial lesion/vulvar acanthosis with altered differentiated (DEVIL/VAAD) have been recognized as HPV-independent, TP53 wild-type precursors for vulvar carcinoma; however, analogous anal lesions have not been described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!