The protein fractions precipitated by ammonium sulfate from the bovine, human and Greenland's seal blood sera enhanced the pain sensitivity of mice, rats and rabbits. The proteins fraction of the seal blood serum was divided in six subfractions by ion-exchange chromatography. One of these subfractions clearly showed hyperalgesic properties, while the others had an opposite effect. The collagenase hydrolysate of the same protein fraction had an analgetic activity. The results of this and previous studies suggest the occurrence of one more nociception-regulating protein-peptide system in mammals.

Download full-text PDF

Source

Publication Analysis

Top Keywords

blood serum
8
seal blood
8
[the hyper-
4
hyper- hypoalgesic
4
hypoalgesic effects
4
effects human
4
human animal
4
animal blood
4
serum proteins]
4
proteins] protein
4

Similar Publications

Objective: Patients with uncontrolled gout have few treatment options. Pegloticase lowers serum urate (SU) levels, but antidrug antibodies limit SU-lowering response and increase infusion reaction (IR) risk. Methotrexate (MTX) cotherapy increases pegloticase response rates and lowers IR risk in pegloticase-naïve patients.

View Article and Find Full Text PDF

Purpose: We hypothesized that radiation-induced tubulointerstitial changes in the kidney can be assessed using MRI-based T relaxation time measurements.

Methods: We performed MRI, histology, and serum biochemistry in two mouse models of radiation nephropathy: one involving external beam radiotherapy and the other using internal irradiation with an α-particle-emitting actinium-225 radiolabeled antibody. We compared the mean T values of different renal compartments between control and external beam radiotherapy or α-particle-emitting actinium-225 radiolabeled antibody-treated groups and between the two radiation-treated groups using a Wilcoxon rank-sum test.

View Article and Find Full Text PDF

Background: Polycystic Ovarian Syndrome (PCOS) is an endocrine disorder associated with increased risk of kidney and liver damage. Current treatments have shown contradictory outcomes, and their long-term use causes unwanted side effects. could serve as a complementary medicine to current PCOS treatments.

View Article and Find Full Text PDF

Elevated CXCL1 triggers dopaminergic neuronal loss in the substantia nigra of C57BL/6J mice: Evaluation of a novel Parkinsonian mouse model.

Zool Res

January 2025

Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong 266071, China. E-mail:

Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease (PD), supporting the "body-first" hypothesis. However, there remains a notable absence of PD-specific animal models induced by inflammatory cytokines. This study introduces a novel mouse model of PD driven by the proinflammatory cytokine CXCL1, identified in our previous research.

View Article and Find Full Text PDF

Intranasal iron administration induces iron deposition, immunoactivation, and cell-specific vulnerability in the olfactory bulb of C57BL/6 mice.

Zool Res

January 2025

School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:

Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!