Our findings indicate that the impedance cardiogram spectrum extends from DC to 50 Hz. Any amplifier with an upper band limit less than 50 Hz can be expected to produce attenuation and distortion of the impedance cardiogram. This signal attenuation may be systematically enhanced under conditions of high heart rate when a greater proportion of signal energy will be in the upper frequency range of the impedance cardiogram spectrum. Therefore, the present study was designed to assess the influence of amplifier bandwidth on dZ/dtmax, stroke volume, and systolic time intervals (LVET, PEP, QZ, QX). Simultaneously measured delta Z and dZ/dt signals from two impedance cardiographs, with corner frequencies of 120 and 60 Hz for the delta Z and 50 and 15 Hz for dZ/dt channels, were contrasted over a broad range of heart rate (70-150 bpm). In addition to the analog dZ/dt signals obtained from the instruments, the delta Z signals were digitally converted to dZ/dt by off-line digital differentiation with a 50 Hz corner frequency. The results demonstrated that the measurements with the 15 Hz corner frequency, when compared with the 50 Hz corner frequency measurements, systematically attenuated the dZ/dtmax amplitude and stroke volume measurements as heart rate increased. The attenuation of dZ/dtmax and stroke volume ranged from about 13% to 26% as heart rate increased from 70 to 150 bpm. When the upper bandlimit was 50 Hz, the dZ/dt signal had greater resolution of waveform events and produced less prolonged systolic time intervals. The 15 Hz amplifier differentially influenced the B point, Z-peak and X minimum, having no apparent effect on the temporal location of the B point, but delaying the Z-peak about 21.7 ms and the X minimum about 7.4 ms. These findings indicate that impedance cardiographs with insufficient upper bandlimits will differentially influence ICG-derived measurements as heart rate varies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0301-0511(93)90076-k | DOI Listing |
Diabetol Metab Syndr
January 2025
School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Pok Fu Lam, Hong Kong, SAR, China.
Background: Epidemiological research on the association between heavy metals and congestive heart failure (CHF) in individuals with abnormal glucose metabolism is scarce. The study addresses this research gap by examining the link between exposure to heavy metals and the odds of CHF in a population with dysregulated glucose metabolism.
Method: This cross-sectional study includes 7326 patients with diabetes and prediabetes from the National Health and Nutrition Examination Survey from 2011 to 2018.
Orphanet J Rare Dis
January 2025
Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
Background: Transient receptor potential cation channel subfamily V member 2 (TRPV2) functions as a stretch-sensitive calcium channel, with overexpression in the sarcolemma of skeletal and cardiac myocytes leading to detrimental calcium influx and triggering muscle degeneration. In our previous pilot study, we showed that tranilast, a TRPV2 inhibitor, reduced brain natriuretic peptide levels in two patients with muscular dystrophy and advanced heart failure. Building on this, we performed a single-arm, open-label, multicenter study herein to evaluate the safety and efficacy of tranilast in the treatment of advanced heart failure in patients with muscular dystrophy.
View Article and Find Full Text PDFAm J Hypertens
January 2025
Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University; Xuzhou 221004, China.
Background: Polo-like kinase 2 (PLK2) is associated with cardiac fibrosis in patients with atrial fibrillation. However, the role of PLK2 in sepsis-induced cardiac injury has not been fully elucidated. We hypothesize that PLK2 may participate in the progression of sepsis-induced cardiac injury.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
The integration of radar technology into smart furniture represents a practical approach to health monitoring, circumventing the concerns regarding user convenience and privacy often encountered by conventional smart home systems. Radar technology's inherent non-contact methodology, privacy-preserving features, adaptability to diverse environmental conditions, and high precision characteristics collectively establish it a compelling alternative for comprehensive health monitoring within domestic environments. In this paper, we introduce a millimeter (mm)-wave radar system positioned strategically behind a seat, featuring an algorithm capable of identifying unique cardiac waveform patterns for healthy subjects.
View Article and Find Full Text PDFDiabetes Technol Ther
January 2025
Department of Paediatric Diabetes and Endocrinology, John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia.
To compare glycemic outcomes during and following moderate-intensity exercise (MIE), high-intensity interval exercise (HIE), and resistance exercise (RE) in adolescents with type 1 diabetes (T1D) using a hybrid closed-loop (HCL) insulin pump while measuring additional physiological signals associated with activity. Twenty-eight adolescents (average age 16.3 ± 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!