We have devised a technique for monitoring cytoplasmic ATP continuously in single hepatocytes. Single isolated rat hepatocytes were injected with the ATP-dependent luminescent protein firefly luciferase, and then superfused with 45 microM luciferin in air-equilibrated medium. Signals of approx. 10-200 photoelectron counts per second could be recorded from individual healthy cells for up to 3 h. The response of the luminescent signal to chemical hypoxia (2-5 mM CN- and 5-10 mM 2-deoxyglucose) was monitored. We found a great cell-to-cell variability in the time course of the ATP decline in response to CN-, 2-deoxyglucose or to their combination; the time for the signal to fall to 10% of the original (corresponding to approx. 100 microM ATP) ranged from approx. 20 to 75 min. This resistance of the cytoplasmic ATP concentration to depletion after blockade of oxidative phosphorylation and glycolysis could be abolished by pretreatment of the cells with etomoxir, which blocks mitochondrial beta-oxidation. Etomoxir alone had no effect on the luciferase signal, but etomoxir-pre-treated cells showed a prompt fall in the luciferase signal starting within 1-2 min of application of cyanide and 2-deoxyglucose and falling to 10% of the original signal in approx. 6-10 min. The technique allows cytoplasmic ATP changes to be monitored in single hepatocytes at concentrations of 1 mM or lower, but more precise calibration of the signal will require correction for the effects of cytoplasmic pH changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1134833PMC
http://dx.doi.org/10.1042/bj2950165DOI Listing

Publication Analysis

Top Keywords

cytoplasmic atp
16
monitoring cytoplasmic
8
single isolated
8
isolated rat
8
rat hepatocytes
8
single hepatocytes
8
10% original
8
luciferase signal
8
atp
6
signal
6

Similar Publications

Recent advancements in the understanding of the alterations in mitochondrial biogenesis in Alzheimer's disease.

Mol Biol Rep

January 2025

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.

View Article and Find Full Text PDF

Mitochondrial dysfunction-driven AMPK-p53 axis activation underpins the anti-hepatocellular carcinoma effects of sulfane sulfur.

Sci Rep

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).

View Article and Find Full Text PDF

Conventional kinesin protein is a prototypical biological molecular motor that can step processively on microtubules towards the plus end by hydrolyzing ATP molecules, performing the biological function of intracellular transports. An important characteristic of the kinesin is the load dependence of its velocity, which is usually measured by using the single molecule optical trapping method with a large-sized bead attached to the motor stalk. Puzzlingly, even for the same kinesin, some experiments showed that the velocity is nearly independent of the forward load whereas others showed that the velocity decreases evidently with the increase in the magnitude of the forward load.

View Article and Find Full Text PDF

Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!