An antiviral soluble form of the LDL receptor induced by interferon.

Science

Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel.

Published: October 1993

Interferons, which induce several intracellular antiviral proteins, also induce an extracellular soluble protein that inhibits vesicular stomatitis virus (VSV) infection. This 28-kilodalton soluble protein was purified to homogeneity and identified by protein sequencing as the ligand-binding domain of the human 160-kilodalton low density lipoprotein receptor (LDLR). The existence of an antiviral soluble LDLR was confirmed by immunoaffinity chromatography with monoclonal antibody to LDLR. This soluble receptor mediates most of the interferon-triggered antiviral activity against VSV, apparently by interfering with virus assembly or budding, and not by inhibiting virus attachment to cells.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.8211145DOI Listing

Publication Analysis

Top Keywords

antiviral soluble
8
soluble protein
8
antiviral
4
soluble form
4
form ldl
4
ldl receptor
4
receptor induced
4
induced interferon
4
interferon interferons
4
interferons induce
4

Similar Publications

Fluorofurimazine, a novel NanoLuc substrate, enhances real-time tracking of influenza A virus infection without altering pathogenicity in mice.

Microbiol Spectr

January 2025

Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.

Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.

View Article and Find Full Text PDF

The biological applications of noncationic porphyrin-fullerene (P-F) dyads as anti-HIV agents have been limited despite the established use of several cationic P-F dyads as anti-cancer photodynamic therapy (PDT) agents. This article explores the potential of amphiphilic non-cationic porphyrin-fullerene dyads as HIV-1 inhibitors under both PDT (light-treated) and non-PDT (dark) conditions. The amphiphilic P-F dyads, PBC and PBC, demonstrated enhanced efficacy in inhibiting the entry and production of HIV-1 (subtypes B and C).

View Article and Find Full Text PDF

Soluble Herpes Virus Entry Mediator and Type II/III Interferons Are Upregulated in Primary Biliary Cholangitis.

Int J Mol Sci

January 2025

The Roger Williams Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London & Foundation for Liver Research, London SE5 9NT, UK.

Bacterial translocation-induced inflammation and immune dysfunction are recognised factors contributing to the pathogenesis of primary biliary cholangitis (PBC). However, the specific involvement of interferons (IFNs) and soluble checkpoints (sol-CRs) in shaping the immune landscape in PBC patients remains unexplored. Furthermore, the influence of ursodeoxycholic acid (UDC) on these immune mediators is unknown.

View Article and Find Full Text PDF

Fc-binding nanodisc restores antiviral efficacy of antibodies with reduced neutralizing effects against evolving SARS-CoV-2 variants.

J Nanobiotechnology

January 2025

Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

Passive antibody therapies, typically administered via parenteral routes, have played a crucial role in the initial response to the COVID-19 pandemic. However, the ongoing evolution of SARS-CoV-2 has revealed significant limitations of this approach, primarily due to mutational escape and the inadequate delivery of antibodies to the upper respiratory tract. To overcome these challenges, we propose a novel prophylactic strategy involving the intranasal delivery of an antibody in combination with an Fc-binding nanodisc.

View Article and Find Full Text PDF

Interferon regulatory factor 2 of red-spotted grouper (Epinephelus akaara): Insights into its transcriptional profiling, antiviral potential, and function in macrophage polarization.

Dev Comp Immunol

January 2025

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

Interferon regulatory factor 2 (IRF2) is a member of the IRF family that is specifically involved in diverse immune responses via interferon (IFN)/IRF-dependent signaling pathways. In this study, IRF2 of Epinephelus akaara (EAIRF2) was identified and characterized by evaluating its structural and functional properties. EAIRF2 showed the highest homology with IRF2 of Epinephelus coioides and clustered with teleosts in the phylogenetic tree.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!