A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. | LitMetric

Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity.

Science

Biophysics Laboratory, Food and Drug Administration, Bethesda, MD 20892.

Published: October 1993

Molecular dynamics simulations of a fluid-phase dipalmitoyl phosphatidylcholine lipid bilayer in water and of neat hexadecane are reported and compared with nuclear magnetic resonance spin-lattice relaxation and quasi-elastic neutron scattering data. On the 100-picosecond time scale of the present simulations, there is effectively no difference in the reorientational dynamics of the carbons in the membrane interior and in pure hexadecane. Given that the calculated fast reorientational correlation times and the "microscopic" lateral diffusion of the lipids show excellent agreement with the experimental results, it is concluded that the apparently high viscosity of the membrane is more closely related to molecular interactions on the surface rather than in the interior.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.8211140DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
dynamics simulations
8
lipid bilayer
8
simulations lipid
4
bilayer hexadecane
4
hexadecane investigation
4
investigation membrane
4
membrane fluidity
4
fluidity molecular
4
simulations fluid-phase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!