Mutation spectra induced by 4-nitroquinoline 1-oxide (4NQO) at the hprt locus for both normal (AA8) and 4NQO-sensitive (UV5) Chinese hamster ovary cells were determined to investigate the effect of DNA repair on the nature of induced mutations. The UV5 cell line is three times more sensitive to 4NQO than the AA8 parental cell line. In UV5 cells, the dGuo-N2-AQO adduct, which is considered to be the most toxic and mutagenic adduct in Escherichia coli, is poorly repaired. The molecular nature of 30 hprt mutants isolated from AA8 and 20 isolated from UV5 cells was determined by sequence analysis of in vitro amplified hprt cDNA. Both similarities and differences emerged. In both cell lines we found that (i) 4NQO is basically a base substitution mutagen acting almost exclusively at G residues and (ii) G transversions are prevalent over G transitions in both cell lines, independently from the ability to repair dGuo-N2-AQO. A high proportion (13/25) of splice mutations was observed in AA8 cells, statistically different (P < 0.04, Fisher's exact test) from the incidence of splice mutants in UV5 cells (4/20). In AA8 mutants, all but two of the point mutations were due to lesions localized on the non-transcribed strand, suggesting preferential repair of the transcribed strand. Compared with AA8, the proportion of mutants due to lesions present on the transcribed strand was higher in UV5 cells, as expected if a preferential repair mechanism was impaired in the sensitive cell line. Our data are consistent with the molecular defect in DNA repair recently characterized in UV5.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mutage/9.1.67DOI Listing

Publication Analysis

Top Keywords

uv5 cells
16
dna repair
12
induced mutations
8
hprt locus
8
cells determined
8
cell lines
8
preferential repair
8
transcribed strand
8
cells
7
uv5
7

Similar Publications

Intramolecular hydrogen bonding (H-bonding) involved in the excited-state proton transfer (ESPT) process results in benzophenone derivatives (BPDs) with an excellent ability to passivate defects. However, the BPDs are in a continuing dynamic transition process between the ground state and the excited state under light radiation conditions. The ground-state BPDs may lose their ability to passivate defects, resulting in an increased defect density of the perovskite.

View Article and Find Full Text PDF

Effect of N-acetyltransferase 2 genetic polymorphism on 4,4'-methylenebis(2-chloroaniline)-induced genotoxicity and oxidative stress.

Arch Toxicol

June 2023

Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA.

4,4'-Methylenebis(2-chloroaniline) or MOCA is an aromatic amine used primarily in polyurethane and rubber industry. MOCA has been linked to hepatomas in animal studies while limited epidemiologic studies reported the association of exposure to MOCA and urinary bladder and breast cancer. We investigated MOCA-induced genotoxicity and oxidative stress in DNA repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human metabolizing enzymes CYP1A2 and N-acetyltransferase 2 (NAT2) variants as well as in rapid, intermediate, and slow NAT2 acetylator cryopreserved human hepatocytes.

View Article and Find Full Text PDF

All viruses depend on host cell proteins for replication. Denying viruses' access to the function of critical host proteins can result in antiviral activity against multiple virus families. In particular, small-molecule drug candidates which inhibit the α-glucosidase enzymes of the endoplasmic reticulum (ER) translation quality control (QC) pathway have demonstrated broad-spectrum antiviral activities and low risk for development of viral resistance.

View Article and Find Full Text PDF

Carcinogenic aromatic amines such as 4-aminobiphenyl (ABP) and 2-aminofluorene (AF) require metabolic activation to form electrophilic intermediates that mutate DNA leading to carcinogenesis. Bioactivation of these carcinogens includes N-hydroxylation catalyzed by CYP1A2 followed by O-acetylation catalyzed by arylamine N-acetyltransferase 2 (NAT2). To better understand the role of NAT2 genetic polymorphism in ABP- and AF-induced mutagenesis and DNA damage, nucleotide excision repair-deficient (UV5) Chinese hamster ovary (CHO) cells were stably transfected with human CYP1A2 and either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles.

View Article and Find Full Text PDF

Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells.

Toxicol Appl Pharmacol

June 2018

Department of Cellular and Molecular Medicine, Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ 85724, United States. Electronic address:

The aim of this study is to characterize the genotoxicity of depleted uranium (DU) in Chinese Hamster Ovary cells (CHO) with mutations in various DNA repair pathways. CHO cells were exposed to 0-300 μM of soluble DU as uranyl acetate (UA) for 0-48 h. Intracellular UA concentrations were measured via inductively coupled mass spectrometry (ICP-MS) and visualized by transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!