We have previously demonstrated that keratocytes penetrate and deposit collagen after a porous web is inserted into interlamellar corneal pockets. In these studies our goal was to determine whether pretreatment of the porous discs would enhance wound healing. We have evaluated four methods of pretreating the porous disc prior to its placement in the stroma. The pretreated discs were followed in vivo for a period of 42 days. The criteria we used to determine whether pretreatment affected wound healing were: collagen deposition, extent of fibroplasia, the synthetic rate of keratocytes within the disc, and lack of edema. Our results indicate that preseeding with stromal keratocytes enhanced the overall synthetic rate and specifically enhanced the amount of collage deposited within the web.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.820280209DOI Listing

Publication Analysis

Top Keywords

pretreating porous
8
determine pretreatment
8
wound healing
8
synthetic rate
8
porous webs
4
webs stromal
4
stromal fibroplasia
4
fibroplasia vivo
4
vivo demonstrated
4
demonstrated keratocytes
4

Similar Publications

The high specific surface area of metal-organic framework (MOF) materials endows them with efficient adsorption capabilities, thereby facilitating sample purification. In this study, a novel aluminum-based MOF (Al-MOF) was synthesized and employed as a solid-phase extraction (SPE) adsorbent for the purification of aflatoxins B (AFB), AFB, AFG, and AFG in vegetable oils. It was revealed that Al-MOF adsorbs aflatoxins through hydrogen bonding and π-π interactions.

View Article and Find Full Text PDF

Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.

View Article and Find Full Text PDF

Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.

View Article and Find Full Text PDF

Some biomasses like cotton contain natural fibrous structures. This is a desirable structural feature for exposure of adsorption sites on cotton-derived activated carbon (AC). This was verified herein by conducting activation of cotton with ZnCl, HPO, KCO or KOH, probing whether structural transformation during activation could be confined inside a cotton fiber.

View Article and Find Full Text PDF

Development of Citric-Acid-Modified Cellulose Monolith for Enriching Glycopeptides.

Anal Chem

January 2025

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.

Prior to mass spectrometry (MS) analysis, pretreatment of low-abundance glycopeptides is vital for identifying protein glycosylation. In this study, we fabricated an environmentally friendly citric-acid-modified cellulose monolith (CCM) characterized by a coral-like porous structure and high-density hydrophilic groups using a thermally induced phase separation (TIPS) method. The CCM production leverages biomass resources, specifically cellulose and citric acid, utilizing TIPS to synthesize continuous porous materials through a straightforward heating and cooling process of polymer solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!